Skip to content

Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

License

Notifications You must be signed in to change notification settings

Onr/Council-GAN

Repository files navigation

Council-GAN

Implementation of our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Paper

Ori Nizan , Ayellet Tal, Breaking the Cycle - Colleagues are all you need [Project]

gan_council_teaser

gan_council_overview

male2female_gif

glasses_gif

anime_gif

Temporary Telegram Bot

Send image to this telegram bot and it will send you back its female translation using our implementation

Usage

Install requirements

conda env create -f conda_requirements.yml

Downloading the dataset

Download the selfie to anime dataset:

bash ./scripts/download.sh U_GAT_IT_selfie2anime

Download the celeba glasses removal dataset:

bash ./scripts/download.sh celeba_glasses_removal

Download the celeba male to female dataset:

bash ./scripts/download.sh celeba_male2female

use your on dataset:

├──datasets
    └──DATASET_NAME
        ├──testA
            ├──im1.png
            ├──im2.png
            └── ...
        ├──testB
            ├──im3.png
            ├──im4.png
            └── ...
        ├──trainA
            ├──im5.png
            ├──im6.png
            └── ...
        └──trainB
            ├──im7.png
            ├──im8.png
            └── ...

and change the data_root attribute to ./datasets/DATASET_NAME in the yaml file

Training:

Selfie to anime:

python train.py --config configs/anime2face_council_folder.yaml --output_path ./outputs/council_anime2face_256_256 --resume

Glasses removel:

python train.py --config configs/galsses_council_folder.yaml --output_path ./outputs/council_glasses_128_128 --resume

Male to female:

python train.py --config configs/male2female_council_folder.yaml --output_path ./outputs/male2famle_256_256 --resume

Testing:

for converting all the images in input_folder using all the members in the council:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

or using spsified memeber:

python test_on_folder.py --config configs/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint ./outputs/council_anime2face_256_256/anime2face_council_folder/checkpoints/b2a_gen_3_01000000.pt --input_folder ./datasets/selfie2anime/testB --a2b 0

Download Pretrain Models

Download pretrain male to female model:

bash ./scripts/download.sh pretrain_male_to_female
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/m2f/256/male2female_council_folder.yaml --output_folder ./outputs/male2famle_256_256 --checkpoint pretrain/m2f/256/01000000 --input_folder ./datasets/celeba_male2female/testA --a2b 1

Download pretrain glasses removal model:

bash ./scripts/download.sh pretrain_glasses_removal
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --output_folder ./outputs/council_glasses_128_128 --checkpoint pretrain/glasses_removal/128/01000000 --input_folder ./datasets/glasses/testA --a2b 1

Download pretrain selfie to anime model:

bash ./scripts/download.sh pretrain_selfie_to_anime
Then to convert images in --input_folder run:
python test_on_folder.py --config pretrain/anime/256/anime2face_council_folder.yaml --output_folder ./outputs/council_anime2face_256_256 --checkpoint pretrain/anime/256/01000000 --input_folder ./datasets/selfie2anime/testB --a2b 0

Test GUI:

gan_council_overview

test GUI on pretrain model:

male2female
python test_gui.py --config pretrain/m2f/128/male2female_council_folder.yaml --checkpoint pretrain/m2f/128/a2b_gen_0_01000000.pt --a2b 1
glasses Removal
python test_gui.py --config pretrain/glasses_removal/128/galsses_council_folder.yaml --checkpoint pretrain/glasses_removal/128/a2b_gen_3_01000000.pt --a2b 1
selfie2anime
python test_gui.py --config pretrain/anime/256/anime2face_council_folder.yaml --checkpoint pretrain/anime/256/b2a_gen_3_01000000.pt --a2b 0

Open In Colab

Citation

@inproceedings{nizan2020council,
  title={Breaking the Cycle - Colleagues are all you need},
  author={Ori Nizan and Ayellet Tal},
  booktitle={IEEE conference on computer vision and pattern recognition (CVPR)},
  year={2020}
}

Acknowledgement

In this work we based our code on MUNIT implementation. Please cite the original MUNIT if you use their part of the code.

About

Implementation for our paper Breaking the Cycle - Colleagues are all you need (CVPR 2020)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published