-
Notifications
You must be signed in to change notification settings - Fork 6
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
104 changed files
with
23,591 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,20 @@ | ||
name: Formatter | ||
|
||
on: | ||
workflow_dispatch: | ||
push: | ||
branches: | ||
- main | ||
pull_request: | ||
types: [opened, reopened, synchronize] | ||
|
||
concurrency: | ||
group: ${{ github.workflow }}-${{ github.event.pull_request.number || github.ref }} | ||
cancel-in-progress: true | ||
|
||
jobs: | ||
formatter: | ||
runs-on: ubuntu-latest | ||
steps: | ||
- uses: actions/checkout@v3 | ||
- uses: psf/black@stable |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2023 PonderV2 | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,37 @@ | ||
weight = None # path to model weight | ||
resume = False # whether to resume training process | ||
evaluate = True # evaluate after each epoch training process | ||
test_only = False # test process | ||
|
||
seed = None # train process will init a random seed and record | ||
save_path = "exp/default" | ||
num_worker = 16 # total worker in all gpu | ||
batch_size = 16 # total batch size in all gpu | ||
batch_size_val = None # auto adapt to bs 1 for each gpu | ||
batch_size_test = None # auto adapt to bs 1 for each gpu | ||
epoch = 100 # total epoch, data loop = epoch // eval_epoch | ||
eval_epoch = 100 # sche total eval & checkpoint epoch | ||
|
||
sync_bn = False | ||
enable_amp = False | ||
empty_cache = False | ||
find_unused_parameters = False | ||
|
||
mix_prob = 0 | ||
param_dicts = None # example: param_dicts = [dict(keyword="block", lr_scale=0.1)] | ||
|
||
# hook | ||
hooks = [ | ||
dict(type="CheckpointLoader"), | ||
dict(type="IterationTimer", warmup_iter=2), | ||
dict(type="InformationWriter"), | ||
dict(type="SemSegEvaluator"), | ||
dict(type="CheckpointSaver", save_freq=None), | ||
dict(type="PreciseEvaluator", test_last=False), | ||
] | ||
|
||
# Trainer | ||
train = dict(type="DefaultTrainer") | ||
|
||
# Tester | ||
test = dict(type="SemSegTester", verbose=True) |
272 changes: 272 additions & 0 deletions
272
configs/nuscenes/pretrain-ponder-spunet-v1m1-0-base-color-amp.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
_base_ = ["../_base_/default_runtime.py"] | ||
|
||
num_gpu = 4 | ||
# misc custom setting | ||
batch_size = 4 * num_gpu # bs: total bs in all gpus | ||
num_worker = 8 * num_gpu | ||
|
||
mix_prob = 0 | ||
empty_cache = True | ||
enable_amp = True | ||
evaluate = False | ||
find_unused_parameters = True | ||
|
||
# trainer | ||
train = dict( | ||
type="MultiDatasetTrainer", | ||
) | ||
|
||
# model settings | ||
model = dict( | ||
type="PonderOutdoor-v2", | ||
mask=dict(ratio=0.8, size=8, channel=4), | ||
backbone=dict( | ||
type="SpUNet-v1m1", | ||
in_channels=4, | ||
num_classes=0, | ||
channels=(32, 64, 128, 256, 256, 128, 96, 96), | ||
layers=(2, 3, 4, 6, 2, 2, 2, 2), | ||
), | ||
projection=dict( | ||
type="SimpleConv3D-v1m1", | ||
in_channels=96, | ||
out_channels=32, | ||
), | ||
renderer=dict( | ||
type="NeuSModel", | ||
field=dict( | ||
type="SDFField", | ||
sdf_decoder=dict( | ||
in_dim=32, | ||
out_dim=16 + 1, | ||
hidden_size=16, | ||
n_blocks=5, | ||
), | ||
rgb_decoder=dict( | ||
in_dim=32 + 16 + 3 + 3, | ||
out_dim=3, | ||
hidden_size=16, | ||
n_blocks=3, | ||
), | ||
beta_init=0.3, | ||
use_gradient=True, | ||
volume_type="default", | ||
padding_mode="zeros", | ||
share_volume=True, | ||
), | ||
collider=dict( | ||
type="AABBBoxCollider", | ||
near_plane=0.01, | ||
bbox=[0.0, 0.0, 0.0, 1.0, 1.0, 1.0], | ||
), | ||
sampler=dict( | ||
type="NeuSSampler", | ||
initial_sampler="UniformSampler", | ||
num_samples=72, | ||
num_samples_importance=24, | ||
num_upsample_steps=1, | ||
train_stratified=True, | ||
single_jitter=False, | ||
), | ||
loss=dict( | ||
sensor_depth_truncation=0.01, | ||
weights=dict( | ||
depth_loss=10.0, | ||
rgb_loss=10.0, | ||
), | ||
), | ||
), | ||
scene_bbox=((-54.0, -54.0, -5.0, 54.0, 54.0, 3.0),), | ||
grid_shape=((180, 180, 5),), | ||
grid_size=((0.6, 0.6, 1.6),), | ||
val_ray_split=8192, | ||
pool_type="mean", | ||
share_volume=True, | ||
render_semantic=False, | ||
conditions=("nuScenes",), | ||
template="[x]", | ||
clip_model="ViT-B/16", | ||
# fmt: off | ||
class_name=( | ||
# nuScenes | ||
"barrier", "bicycle", "bus", "car", "construction vehicle", | ||
"motorcycle", "pedestrian", "traffic cone", "trailer", "truck", | ||
"path suitable or safe for driving", "other flat", "sidewalk", "terrain", "man made", "vegetation", | ||
), | ||
valid_index=( | ||
[i for i in range(16)], | ||
), | ||
) | ||
|
||
# scheduler settings | ||
epoch = 24 | ||
eval_epoch = 24 | ||
optimizer = dict(type="AdamW", lr=0.0002, weight_decay=0.01) | ||
scheduler = dict( | ||
type="OneCycleLR", | ||
max_lr=optimizer["lr"], | ||
pct_start=0.4, | ||
anneal_strategy="cos", | ||
div_factor=10.0, | ||
final_div_factor=100.0, | ||
) | ||
|
||
data = dict( | ||
num_classes=16, | ||
ignore_index=-1, | ||
names=[ | ||
"barrier", | ||
"bicycle", | ||
"bus", | ||
"car", | ||
"construction_vehicle", | ||
"motorcycle", | ||
"pedestrian", | ||
"traffic_cone", | ||
"trailer", | ||
"truck", | ||
"driveable_surface", | ||
"other_flat", | ||
"sidewalk", | ||
"terrain", | ||
"manmade", | ||
"vegetation", | ||
], | ||
train=dict( | ||
type="ConcatDataset", | ||
datasets=[ | ||
# nuScenes | ||
dict( | ||
type="NuScenesDataset", | ||
split="train", | ||
data_root="data/nuscenes", | ||
transform=[ | ||
dict( | ||
type="RandomRotate", | ||
angle=[-0.25, 0.25], | ||
axis="z", | ||
center=[0, 0, 0], | ||
p=0.5, | ||
keys=["lidar2img", "lidar2cam"], | ||
), | ||
dict( | ||
type="RandomScale", | ||
scale=[0.9, 1.1], | ||
anisotropic=False, | ||
keys=["lidar2img", "lidar2cam"], | ||
), | ||
dict( | ||
type="RandomShift", | ||
shift=[0.5, 0.5, 0.5], | ||
keys=["lidar2img", "lidar2cam"], | ||
), | ||
dict( | ||
type="RandomFlip", | ||
p=0.5, | ||
keys=["lidar2img", "lidar2cam"], | ||
), | ||
dict( | ||
type="PointRangeFilter", | ||
point_cloud_range=(-54.0, -54.0, -5.0, 54.0, 54.0, 3.0), | ||
padding=0.1, | ||
), | ||
dict( | ||
type="GridSample", | ||
grid_size=0.1, | ||
hash_type="ravel", | ||
mode="train", | ||
keys=("coord", "strength", "segment"), | ||
return_grid_coord=True, | ||
), | ||
dict( | ||
type="ProjectOnImage", | ||
filter_overlap=True, | ||
close_radius=3.0, | ||
), | ||
dict( | ||
type="RaySample", | ||
point_nsample=512, | ||
fetch_color=True, | ||
fetch_segment=True, | ||
), | ||
dict(type="Add", keys_dict={"condition": "nuScenes"}), | ||
dict(type="ToTensor"), | ||
dict( | ||
type="Collect", | ||
keys=( | ||
"coord", | ||
"grid_coord", | ||
"segment", | ||
"condition", | ||
"ray_start", | ||
"ray_end", | ||
"ray_segment", | ||
"ray_color", | ||
), | ||
offset_keys_dict=dict(offset="coord", ray_offset="ray_start"), | ||
stack_keys=("lidar2img", "lidar2cam", "cam_intrinsic"), | ||
feat_keys=("coord", "strength"), | ||
), | ||
], | ||
test_mode=False, | ||
ignore_index=-1, | ||
loop=1, | ||
use_camera=True, | ||
), | ||
], | ||
), | ||
val=dict( | ||
type="NuScenesDataset", | ||
split="val", | ||
data_root="data/nuscenes", | ||
transform=[ | ||
dict( | ||
type="GridSample", | ||
grid_size=0.1, | ||
hash_type="ravel", | ||
mode="train", | ||
keys=("coord", "strength", "segment"), | ||
return_grid_coord=True, | ||
), | ||
dict( | ||
type="ProjectOnImage", | ||
filter_overlap=True, | ||
close_radius=3.0, | ||
), | ||
dict( | ||
type="RaySample", | ||
point_nsample=512, | ||
fetch_color=True, | ||
fetch_segment=True, | ||
), | ||
dict(type="Add", keys_dict={"condition": "nuScenes"}), | ||
dict(type="ToTensor"), | ||
dict( | ||
type="Collect", | ||
keys=( | ||
"coord", | ||
"grid_coord", | ||
"segment", | ||
"condition", | ||
"ray_start", | ||
"ray_end", | ||
"ray_segment", | ||
"ray_color", | ||
), | ||
offset_keys_dict=dict(offset="coord", ray_offset="ray_start"), | ||
stack_keys=("lidar2img", "lidar2cam", "cam_intrinsic"), | ||
feat_keys=("coord", "strength"), | ||
), | ||
], | ||
test_mode=False, | ||
ignore_index=-1, | ||
use_camera=True, | ||
), | ||
) | ||
|
||
hooks = [ | ||
dict(type="CheckpointLoader"), | ||
dict(type="IterationTimer", warmup_iter=2), | ||
dict(type="InformationWriter"), | ||
dict(type="CheckpointSaver", save_freq=None), | ||
] |
Oops, something went wrong.