Skip to content

Commit

Permalink
Merge pull request #24 from OxfordRSE/pyright_typing
Browse files Browse the repository at this point in the history
Pyright typing not complete
  • Loading branch information
mihaeladuta authored Nov 21, 2024
2 parents 9065c1b + b4ca222 commit 2de4454
Show file tree
Hide file tree
Showing 8 changed files with 168 additions and 120 deletions.
33 changes: 17 additions & 16 deletions l2gv2/anomaly_detection.py
Original file line number Diff line number Diff line change
@@ -1,21 +1,22 @@
"""Anomaly detection module."""

from typing import Any
import numpy as np
from l2gv2.patch.patch import Patch


def raw_anomaly_score_node_patch(aligned_patch_emb, emb, node) -> float:
def raw_anomaly_score_node_patch(aligned_patch_emb, emb, node) -> np.floating[Any]:
"""TODO: docstring for `raw_anomaly_score_node_patch`
Args:
aligned_patch_emb ([type]): [description]
aligned_patch_emb: [description]
emb ([type]): [description]
emb: [description]
node ([type]): [description]
node: [description]
Returns:
float: Raw anomaly score of the node in the patch.
Raw anomaly score of the node in the patch.
"""

return np.linalg.norm(aligned_patch_emb.get_coordinate(node) - emb[node])
Expand All @@ -25,10 +26,10 @@ def nodes_in_patches(patch_data: list[Patch]) -> list:
"""TODO: docstring for `nodes_in_patches`
Args:
patch_data (list[Patch]): [description]
patch_data: [description]
Returns:
list: [description]
[description]
"""

return [set(p.nodes.numpy()) for p in patch_data]
Expand All @@ -40,14 +41,14 @@ def normalized_anomaly(
"""TODO: docstring for `normalized_anomaly`
Args:
patch_emb (list[Patch]): [description]
patch_emb: [description]
patch_data (list[Patch]): [description]
patch_data: [description]
emb (np.array): [description]
emb: [description]
Returns:
np.array: [description]
[description]
"""

nodes = nodes_in_patches(patch_data)
Expand Down Expand Up @@ -95,16 +96,16 @@ def get_outliers(
"""TODO: docstring for `get_outliers`
Args:
patch_emb (list): [description]
patch_emb: [description]
patch_data (list): [description]
patch_data: [description]
emb (np.array): [description]
emb: [description]
k (float): Threshold for outliers as multiplier of the standard deviation.
k: Threshold for outliers as multiplier of the standard deviation.
Returns:
list[int]: [description]
[description]
"""

out = []
Expand Down
8 changes: 4 additions & 4 deletions l2gv2/induced_subgraph.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,14 +8,14 @@ def induced_subgraph(data: tg.data.Data, nodes, extend_hops: int = 0) -> tg.data
"""TODO: docstring for `induced_subgraph`
Args:
data (torch_geometric.data.Data): [description]
data: [description]
nodes (int): [description]
nodes: [description]
extend_hops (int, optional): [description], default is 0.
extend_hops: [description], default is 0.
Returns:
torch_geometric.data.Data: [description]
[description]
"""

nodes = torch.as_tensor(nodes, dtype=torch.long)
Expand Down
28 changes: 22 additions & 6 deletions l2gv2/manopt_optimization.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
embeddings of the patches using the manopt library."""

import random
from typing import Tuple, Optional
from typing import Tuple, Optional, Any, Literal
import autograd.numpy as anp
import pymanopt
import pymanopt.manifolds
Expand Down Expand Up @@ -43,7 +43,7 @@ def total_loss(
dim,
k,
rand: Optional[bool] = False,
) -> float:
) -> tuple[np.floating[Any] | float, dict]:
"""TODO: docstring for `total_loss`.
R: list of orthogonal matrices for embeddings of patches.
Expand Down Expand Up @@ -116,7 +116,11 @@ def loss(
consecutive: Optional[bool] = False,
random_choice_in_intersections: Optional[bool] = False,
fij: Optional[bool] = False,
) -> Tuple[float, Optional[list[float]]]:
) -> (
Tuple[np.floating[Any] | float | Literal[0], dict | None]
| np.floating[Any]
| Literal[0]
):
"""TODO: docstring for `loss`.
R: list of orthogonal matrices for embeddings of patches.
Expand Down Expand Up @@ -165,7 +169,7 @@ def loss(
if fij:
return l, f

return l, None
return l

l, f = total_loss(
rotations,
Expand Down Expand Up @@ -313,6 +317,8 @@ def ANPloss_nodes_consecutive_patches(
l += anp.linalg.norm(theta1 - theta2) ** 2

return l # , fij


# pylint: enable=invalid-name
# pylint: enable=no-member

Expand Down Expand Up @@ -383,9 +389,12 @@ def ANPloss_nodes(
# fij[(i, j+1+i, n)]=[theta1, theta2]

return 1 / len(patches) * l # fij


# pylint enable=invalid-name
# pylint enable=no-member


# pylint: disable=no-member
# pylint does not infer autograd.numpy.random.seed so disable no-member
def optimization(
Expand Down Expand Up @@ -459,7 +468,11 @@ def cost(*R):
scales = result.point[2 * n_patches :]
emb_problem = l2g.AlignmentProblem(patches)

if emb_problem.n_nodes is None or emb_problem.dim is None:
raise ValueError("Both n_nodes and dim must be set to integer values.")

embedding = np.empty((emb_problem.n_nodes, emb_problem.dim))

for node, patch_list in enumerate(emb_problem.patch_index):
embedding[node] = np.mean(
[
Expand All @@ -471,8 +484,11 @@ def cost(*R):
)

return result, embedding


# pylint enable=no-member


def loss_dictionary(rs, ss, ts, nodes, patches, dim, k):
"""TODO: docstring for `loss_dictionary`.
Expand Down Expand Up @@ -508,8 +524,8 @@ def loss_dictionary(rs, ss, ts, nodes, patches, dim, k):
patches,
dim,
k,
consecutive=i,
random_choice_in_intersections=j,
consecutive=(i>0),
random_choice_in_intersections=(j>0),
fij=False,
)
return l
Loading

0 comments on commit 2de4454

Please sign in to comment.