-
Notifications
You must be signed in to change notification settings - Fork 24
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
1,049 additions
and
0 deletions.
There are no files selected for viewing
244 changes: 244 additions & 0 deletions
244
Exercises/Session 4 - Quantum Information (with solutions).ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e4f44eb7", | ||
"metadata": {}, | ||
"source": [ | ||
"$\\def\\tcoreleft{\\underset{\\tiny\\mid}{\\textcolor{MidnightBlue}{⦸}}}$\n", | ||
"$\\def\\tcorecenter{\\underset{\\tiny\\mid}{\\textcolor{RedOrange}{⦿}}}$\n", | ||
"$\\def\\tcoreright{\\underset{\\tiny\\mid}{\\textcolor{MidnightBlue}{\\oslash}}}$\n", | ||
"<h1 style=\"text-align: center;\"><b>TMQS Workshop 2024</b> @ Zuse Institute Berlin</h1>\n", | ||
"<h2 style=\"text-align: center;\">Summer School on Tensor Methods for Quantum Simulation</h2>\n", | ||
"<h2 style=\"text-align: center;\">June 3 - 5, 2024</h2>\n", | ||
"<h1 style=\"text-align: center; background-color:#D6EAF8 ;padding:50px\">$\\tcoreleft - \\tcoreleft - \\tcoreleft - \\cdots - \\tcorecenter - \\cdots - \\tcoreright - \\tcoreright$</h1>\n", | ||
"</br>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "6f6cc702", | ||
"metadata": {}, | ||
"source": [ | ||
"***" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "74ce99d5-268a-4ad8-980b-de19d60b6be6", | ||
"metadata": {}, | ||
"source": [ | ||
"## **Session 4 - Quantum Information**" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "e8441c54-ffd4-45b4-ab04-ff8cf85e6474", | ||
"metadata": {}, | ||
"source": [ | ||
"***" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "a781c1c8", | ||
"metadata": {}, | ||
"source": [ | ||
"## Exercise 4.1\n", | ||
"\n", | ||
"Which of the following are valid quantum states?\n", | ||
"\n", | ||
"$\\hspace{1cm}$$\\begin{pmatrix} 0 \\\\ 1\\end{pmatrix}$, $\\quad \\begin{pmatrix} 1 \\\\ 1\\end{pmatrix}$, $\\quad \\frac{1}{\\sqrt{2}}\\begin{pmatrix} 0 \\\\ -i\\end{pmatrix}$, $\\quad \\frac{1}{\\sqrt{3}}\\begin{pmatrix} 1 \\\\ 2\\end{pmatrix}$, $\\quad \\begin{pmatrix} \\sqrt{2/3} \\\\ i/\\sqrt{3}\\end{pmatrix}$\n", | ||
"\n", | ||
"What is the probability to measure $0$ and $1$ for the valid quantum states?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "9c481a4d-7f0e-45a0-8ea6-19ce1accee7c", | ||
"metadata": {}, | ||
"source": [ | ||
"***" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ffc18314-42a9-4adf-a0ad-bcf763e8899e", | ||
"metadata": {}, | ||
"source": [ | ||
"$\\textcolor{red}{\\textbf{SOLUTION:}}$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "61ad94fb-c6d8-4b79-b143-4850e790d826", | ||
"metadata": {}, | ||
"source": [ | ||
"Consider the euclidean norm of each vector, we get\n", | ||
"\n", | ||
"$\\hspace{0.5cm}$$\\left\\lVert\\begin{pmatrix} 0 \\\\ 1\\end{pmatrix}\\right\\rVert_2=1$, \n", | ||
"$\\quad \\left\\lVert\\begin{pmatrix} 1 \\\\ 1\\end{pmatrix}\\right\\rVert_2=\\sqrt{2}$, \n", | ||
"$\\quad \\left\\lVert\\frac{1}{\\sqrt{2}}\\begin{pmatrix} 0 \\\\ -i\\end{pmatrix}\\right\\rVert_2 = \\frac{1}{\\sqrt{2}}$, \n", | ||
"$\\quad \\left\\lVert\\frac{1}{\\sqrt{3}}\\begin{pmatrix} 1 \\\\ 2\\end{pmatrix}\\right\\rVert_2 = \\sqrt{\\frac{5}{3}}$, \n", | ||
"$\\quad \\left\\lVert\\begin{pmatrix} \\sqrt{2/3} \\\\ i/\\sqrt{3}\\end{pmatrix}\\right\\rVert_2 = 1$.\n", | ||
"\n", | ||
"Only the first and the last vector represent valid quantum states!" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "6e1b9898-10a5-422d-8cdb-a8f42bdc01c4", | ||
"metadata": {}, | ||
"source": [ | ||
"***" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "0e8243a2-a54e-4aaf-b460-f1f7f9e369b0", | ||
"metadata": {}, | ||
"source": [ | ||
"## Exercise 4.2\n", | ||
"\n", | ||
"**a)**$\\quad$Write down the state vector of two quantum states \n", | ||
"\n", | ||
"$\\hspace{1cm}$$\\displaystyle|\\Psi_1\\rangle = \\alpha_1 |0\\rangle + \\beta_1 |1\\rangle \\quad $ and $\\quad |\\Psi_2\\rangle = \\alpha_2 |0\\rangle + \\beta_2 |1\\rangle$, \n", | ||
"\n", | ||
"$\\hspace{0.35cm}$$\\quad$i.e. the tensor product, in the computational basis. Write down the basis vectors of the composite system.\n", | ||
"\n", | ||
"**b)**$\\quad$Consider the $2$-qubit state \n", | ||
"\n", | ||
"$\\hspace{1cm}$$\\displaystyle|\\Psi\\rangle = \\frac{1}{\\sqrt{2}} |00\\rangle + \\frac{1}{2}|01\\rangle + \\frac{1}{2} |11\\rangle$. \n", | ||
"\n", | ||
"$\\hspace{0.35cm}$$\\quad$What is the state after a measurement of the first qubit where you obtain $|0\\rangle$?\n", | ||
"\n", | ||
"$\\hspace{0.35cm}$$\\quad$Is this an entangled state?\n", | ||
"\n", | ||
"$\\hspace{0.35cm}$$\\quad$*Hint:* Quantum states are normalized!" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "f1b9d1e8-8c3a-4ac4-a26c-e285881cf7bf", | ||
"metadata": {}, | ||
"source": [ | ||
"***" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "b9d96ea3-335a-4219-a46e-a52aada2c31e", | ||
"metadata": {}, | ||
"source": [ | ||
"$\\textcolor{red}{\\textbf{SOLUTION:}}$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "ac34fc7e-46d8-4b58-9025-2f88b3c93405", | ||
"metadata": {}, | ||
"source": [ | ||
"**a)**$\\quad$$|\\Psi_1\\rangle \\otimes |\\Psi_2\\rangle = \\left( \\alpha_1 |0\\rangle + \\beta_1 |1\\rangle \\right) \\otimes \\left( \\alpha_2 |0\\rangle + \\beta_2 |1\\rangle \\right) = \\alpha_1 \\alpha_2 | 00 \\rangle + \\alpha_1 \\beta_2 | 01 \\rangle + \\beta_1 \\alpha_2 | 10\\rangle + \\beta_1 \\beta_2 | 11\\rangle$\n", | ||
"\n", | ||
"$\\hspace{2.95cm}$$\\widehat{=}~ \\begin{pmatrix} \\alpha_1 \\alpha_2 & \\alpha_1 \\beta_2 & \\beta_1 \\alpha_2 & \\beta_1 \\beta_2\\end{pmatrix}^\\top$\n", | ||
"\n", | ||
"$\\hspace{0.35cm}$$\\quad$basis vectors: $\\quad \\begin{pmatrix} 1 & 0 & 0 & 0 \\end{pmatrix}^\\top, \\dots, \\begin{pmatrix} 0 & 0 & 0 & 1 \\end{pmatrix}^\\top$\n", | ||
"\n", | ||
"**b)**$\\quad$The classical state $|11\\rangle$ drops off, and we obtain (after normalization):\n", | ||
"\n", | ||
"$\\hspace{1.5cm}$$\\displaystyle \\sqrt{\\frac{4}{3}}\\left( \\frac{1}{\\sqrt{2}} |00\\rangle + \\frac{1}{2}|01\\rangle \\right) = \\sqrt{\\frac{2}{3}} |00\\rangle + \\sqrt{\\frac{1}{3}} |01\\rangle$\n", | ||
"\n", | ||
"$\\hspace{0.35cm}$$\\quad$This state cannot be written as a tensor-product term. \n", | ||
"\n", | ||
"$\\hspace{0.35cm}$$\\quad$You can also see this from the fact that we get different probabilities for the outcomes of the second qubit depending on the different outcomes of the first qubit." | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "818bf57f-be0c-408a-9776-414578b7763a", | ||
"metadata": {}, | ||
"source": [ | ||
"***" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "bed85201-1bfb-45a2-a57a-44332f370276", | ||
"metadata": {}, | ||
"source": [ | ||
"## Exercise 4.3\n", | ||
"\n", | ||
"Suppose you have $n + 1$ qubits. We will write $|\\vec{x}\\rangle$ to mean the $n$-qubit classical state given by the number $x$ in binary. For instance, if $n = 2$ then:\n", | ||
"\n", | ||
"$\\hspace{0.5cm}$$|\\vec{0}\\rangle = |00\\rangle , \\quad |\\vec{1}\\rangle = |01\\rangle, \\quad |\\vec{2}\\rangle = |10\\rangle, \\quad |\\vec{3}\\rangle = |11\\rangle$.\n", | ||
"\n", | ||
"Assume the qubits are in the state\n", | ||
"\n", | ||
"$\\hspace{0.5cm}$$\\displaystyle |\\Psi\\rangle = \\frac{1}{\\sqrt{2^n}} \\sum_{x=0}^{2^n -1} | \\vec{x} \\rangle \\otimes | x~\\text{mod}~2 \\rangle$.\n", | ||
"\n", | ||
"**a)**$\\quad$What is the resulting state if we measure the last qubit and obtain $|0\\rangle$?\n", | ||
"\n", | ||
"**b)**$\\quad$What is the resulting state if we measure the last qubit and obtain $|1\\rangle$?" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "1166e9c0-7a64-4cf6-a269-0c83743afa43", | ||
"metadata": {}, | ||
"source": [ | ||
"***" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "464bcad9-fe4c-420e-8b41-dad09248a94f", | ||
"metadata": {}, | ||
"source": [ | ||
"$\\textcolor{red}{\\textbf{SOLUTION:}}$" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "bb28814f-8792-4365-ac53-15be05d0549f", | ||
"metadata": {}, | ||
"source": [ | ||
"**a)**$\\quad$If we measure $|0\\rangle$, all states with last qubit $|1\\rangle$ disappear from the summation and we have\n", | ||
"\n", | ||
"$\\hspace{1cm}$$\\displaystyle\\frac{1}{\\sqrt{2^{n-1}}} \\sum_{x=0, x~\\text{even}}^{2^n -1} | \\vec{x} \\rangle \\otimes | 0 \\rangle = \\frac{1}{\\sqrt{2^{n-1}}} \\sum_{x=0}^{2^{n-1} -1} | \\overrightarrow{2x} \\rangle \\otimes | 0 \\rangle $\n", | ||
"\n", | ||
"**b)**$\\quad$If we measure $|1\\rangle$, all states with last qubit $|0\\rangle$ disappear from the summation and we have\n", | ||
"\n", | ||
"$\\hspace{1cm}$$\\displaystyle\\frac{1}{\\sqrt{2^{n-1}}} \\sum_{x=0, x~\\text{odd}}^{2^n -1} | \\vec{x} \\rangle \\otimes | 0 \\rangle = \\frac{1}{\\sqrt{2^{n-1}}} \\sum_{x=0}^{2^{n-1} -1} | \\overrightarrow{2x+1} \\rangle \\otimes | 0 \\rangle $" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "c5f602d6-775a-4c77-a737-c2e6168794a5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
805 changes: 805 additions & 0 deletions
805
Exercises/Session 5 - Quantum Computing (with solutions).ipynb
Large diffs are not rendered by default.
Oops, something went wrong.