-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathfilters.py
170 lines (150 loc) · 5.77 KB
/
filters.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
"""Spatial and temporal filters."""
import warnings
from collections.abc import Sequence
from functools import reduce
from math import ceil
from typing import Literal
import numpy as np
import torch
from einops import repeat
def filter_separable(
x: torch.Tensor,
kernels: Sequence[torch.Tensor],
dim: Sequence[int],
pad_mode: Literal['constant', 'reflect', 'replicate', 'circular', 'none'] = 'constant',
pad_value: float = 0.0,
) -> torch.Tensor:
"""Apply the separable filter kernels to the tensor x along the axes dim.
Does padding to keep the output the same size as the input.
Parameters
----------
x
Tensor to filter
kernels
List of 1D kernels to apply to the tensor x
dim
Axes to filter over. Must have the same length as kernels.
pad_mode
Padding mode
pad_value
Padding value for pad_mode = constant
Returns
-------
The filtered tensor, with the same shape as the input unless pad_mode is 'none' and
and promoted dtype of the input and the kernels.
"""
if len(dim) != len(kernels):
raise ValueError('Must provide matching length kernels and dim arguments.')
# normalize dim to allow negative indexing in input
dim = tuple([a % x.ndim for a in dim])
if len(dim) != len(set(dim)):
raise ValueError(f'Dim must be unique. Normalized dims are {dim}')
if pad_mode == 'constant' and pad_value == 0:
# padding is done inside the convolution
padding_conv = 'same'
else:
# padding is done with pad() before the convolution
padding_conv = 'valid'
# output will be of the promoted type of the input and the kernels
target_dtype = reduce(torch.promote_types, [k.dtype for k in kernels], x.dtype)
x = x.to(target_dtype)
for kernel, d in zip(kernels, dim, strict=False):
kernel = kernel.to(device=x.device, dtype=target_dtype)
# moveaxis is not implemented for batched tensors, so vmap would fail.
# thus we use permute.
idx = list(range(x.ndim))
# swapping the last axis and the axis to filter over
idx[d], idx[-1] = idx[-1], idx[d]
x = x.permute(idx)
# flatten first to allow for circular, replicate and reflection padding for arbitrary tensor size
x_flat = x.flatten(end_dim=-2)
if padding_conv == 'valid' and pad_mode != 'none':
left_pad = (len(kernel) - 1) // 2
right_pad = (len(kernel) - 1) - left_pad
x_flat = torch.nn.functional.pad(x_flat, pad=(left_pad, right_pad), mode=pad_mode, value=pad_value)
x = torch.nn.functional.conv1d(
repeat(x_flat, 'batch x -> batch channels x', channels=1),
repeat(kernel, 'x -> batch channels x', batch=1, channels=1),
padding=padding_conv,
).reshape(*x.shape[:-1], -1)
# for a single permutation, this undoes the permutation
x = x.permute(idx)
return x
def gaussian_filter(
x: torch.Tensor,
sigmas: float | Sequence[float] | torch.Tensor,
dim: int | Sequence[int] | None = None,
truncate: int = 3,
pad_mode: Literal['constant', 'reflect', 'replicate', 'circular'] = 'constant',
pad_value: float = 0.0,
) -> torch.Tensor:
"""Apply a and-Gaussian filter.
Parameters
----------
x
Tensor to filter
sigmas
Standard deviation for Gaussian kernel. If iterable, must have length equal to the number of axes.
dim
Axis or axes to filter over. If None, filters over all axes.
truncate
Truncate the filter at this many standard deviations.
pad_mode
Padding mode
pad_value
Padding value for pad_mode = constant
"""
if dim is None:
dim = tuple(range(x.ndim))
elif isinstance(dim, int):
dim = (dim,)
sigmas = torch.as_tensor(sigmas) if np.iterable(sigmas) else torch.tensor([sigmas] * len(dim))
if not torch.all(sigmas > 0):
raise ValueError('`sigmas` must be positive')
if len(sigmas) != len(dim):
raise ValueError('Must provide matching length sigmas and dim arguments. ')
kernels = tuple(
[
torch.exp(-0.5 * (torch.arange(-ceil(truncate * sigma), ceil(truncate * sigma) + 1) / sigma) ** 2)
for sigma in sigmas
]
)
kernels = tuple([(k / k.sum()).to(device=x.device) for k in kernels])
x_filtered = filter_separable(x, kernels, dim, pad_mode, pad_value)
return x_filtered
def uniform_filter(
x: torch.Tensor,
width: int | Sequence[int] | torch.Tensor,
dim: int | Sequence[int] | None = None,
pad_mode: Literal['constant', 'reflect', 'replicate', 'circular'] = 'constant',
pad_value: float = 0.0,
) -> torch.Tensor:
"""Apply a and-uniform filter.
Parameters
----------
x
Tensor to filter
width
Width of uniform kernel. If iterable, must have length equal to the number of axes.
dim
Axis or axes to filter over. If None, filters over all axes.
pad_mode
Padding mode
pad_value
Padding value for pad_mode = constant
"""
if dim is None:
dim = tuple(range(x.ndim))
elif isinstance(dim, int):
dim = (dim,)
width = torch.as_tensor(width) if np.iterable(width) else torch.tensor([width] * len(dim))
if not torch.all(width > 0):
raise ValueError('width must be positive.')
if torch.any(width % 2 != 1):
warnings.warn('width should be odd.', stacklevel=2)
if len(width) != len(dim):
raise ValueError('Must provide matching length width and dim arguments. ')
width = torch.minimum(width, torch.tensor(x.shape)[(dim), ...])
kernels = tuple([torch.ones(width, device=x.device) / width for width in width])
x_filtered = filter_separable(x, kernels, dim, pad_mode, pad_value)
return x_filtered