Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Support confirmation for ULTRALYTICS YOLOv10 and YOLO11; support for ULTRALYTICS OBB models #184

Merged
merged 5 commits into from
Oct 3, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/source/creators/creators_add_metadata_to_model.rst
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ Availeble detector types:
- :code:`YOLO_v9`
- :code:`YOLO_Ultralytics`
- :code:`YOLO_Ultralytics_segmentation`
- :code:`YOLO_Ultralytics_obb`

=======
Example
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ class DetectorType(enum.Enum):
YOLO_v9 = 'YOLO_v9'
YOLO_ULTRALYTICS = 'YOLO_Ultralytics'
YOLO_ULTRALYTICS_SEGMENTATION = 'YOLO_Ultralytics_segmentation'
YOLO_ULTRALYTICS_OBB = 'YOLO_Ultralytics_obb'

def get_parameters(self):
if self == DetectorType.YOLO_v5_v7_DEFAULT:
Expand All @@ -36,7 +37,7 @@ def get_parameters(self):
has_inverted_output_shape=True,
skipped_objectness_probability=True,
)
elif self == DetectorType.YOLO_ULTRALYTICS or self == DetectorType.YOLO_ULTRALYTICS_SEGMENTATION:
elif self == DetectorType.YOLO_ULTRALYTICS or self == DetectorType.YOLO_ULTRALYTICS_SEGMENTATION or self == DetectorType.YOLO_ULTRALYTICS_OBB:
return DetectorTypeParameters(
has_inverted_output_shape=True,
skipped_objectness_probability=True,
Expand Down
2 changes: 1 addition & 1 deletion src/deepness/metadata.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
name=Deepness: Deep Neural Remote Sensing
qgisMinimumVersion=3.22
description=Inference of deep neural network models (ONNX) for segmentation, detection and regression
version=0.6.3
version=0.6.4
author=PUT Vision
email=przemyslaw.aszkowski@gmail.com

Expand Down
14 changes: 10 additions & 4 deletions src/deepness/processing/map_processor/map_processor_detection.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@
from deepness.processing.map_processor.utils.ckdtree import cKDTree
from deepness.processing.models.detector import Detection, Detector
from deepness.processing.tile_params import TileParams
from deepness.processing.models.detector import DetectorType


class MapProcessorDetection(MapProcessorWithModel):
Expand Down Expand Up @@ -49,8 +50,10 @@ def _run(self) -> MapProcessingResult:
bounding_boxes_in_tile_batched = self._process_tile(tile_img_batched, tile_params_batched)
all_bounding_boxes += [d for det in bounding_boxes_in_tile_batched for d in det]

with_rot = self.detection_parameters.detector_type == DetectorType.YOLO_ULTRALYTICS_OBB

if len(all_bounding_boxes) > 0:
all_bounding_boxes_nms = self.remove_overlaping_detections(all_bounding_boxes, iou_threshold=self.detection_parameters.iou_threshold)
all_bounding_boxes_nms = self.remove_overlaping_detections(all_bounding_boxes, iou_threshold=self.detection_parameters.iou_threshold, with_rot=with_rot)
all_bounding_boxes_restricted = self.limit_bounding_boxes_to_processed_area(all_bounding_boxes_nms)
else:
all_bounding_boxes_restricted = []
Expand Down Expand Up @@ -197,17 +200,20 @@ def add_to_gui():
return add_to_gui

@staticmethod
def remove_overlaping_detections(bounding_boxes: List[Detection], iou_threshold: float) -> List[Detection]:
def remove_overlaping_detections(bounding_boxes: List[Detection], iou_threshold: float, with_rot: bool = False) -> List[Detection]:
bboxes = []
probs = []
for det in bounding_boxes:
bboxes.append(det.get_bbox_xyxy())
if with_rot:
bboxes.append(det.get_bbox_xyxy_rot())
else:
bboxes.append(det.get_bbox_xyxy())
probs.append(det.conf)

bboxes = np.array(bboxes)
probs = np.array(probs)

pick_ids = Detector.non_max_suppression_fast(bboxes, probs, iou_threshold)
pick_ids = Detector.non_max_suppression_fast(boxes=bboxes, probs=probs, iou_threshold=iou_threshold, with_rot=with_rot)

filtered_bounding_boxes = [x for i, x in enumerate(bounding_boxes) if i in pick_ids]
filtered_bounding_boxes = sorted(filtered_bounding_boxes, reverse=True)
Expand Down
Loading
Loading