Skip to content
This repository has been archived by the owner on Jan 24, 2024. It is now read-only.

Add Op UnitTest for norm #1502

Closed
Closed
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 133 additions & 0 deletions python/tests/ops/test_norm_op.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
#!/usr/bin/env python3

# Copyright (c) 2023 CINN Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
import numpy as np
from op_test import OpTest, OpTestTool
from op_test_helper import TestCaseHelper
import paddle
import cinn
from cinn.frontend import *
from cinn.common import *


@OpTestTool.skip_if(not is_compiled_with_cuda(),
"x86 test will be skipped due to timeout.")
class TestNormOp(OpTest):
def setUp(self):
print(f"\nRunning {self.__class__.__name__}: {self.case}")
self.prepare_inputs()

def prepare_inputs(self):
self.x_np = self.random(
shape=self.case["x_shape"], dtype=self.case["x_dtype"])

def build_paddle_program(self, target):
x = paddle.to_tensor(self.x_np, stop_gradient=True)
out = paddle.linalg.norm(
x,
p=self.case["p"],
axis=self.case["axis"],
keepdim=self.case["keepdim"])

self.paddle_outputs = [out]

def build_cinn_program(self, target):
builder = NetBuilder("norm")
x = builder.create_input(
self.nptype2cinntype(self.case["x_dtype"]), self.case["x_shape"],
"x")
out = builder.norm(
x, axis=self.case["axis"], epsilon=self.case["epsilon"])

prog = builder.build()
res = self.get_cinn_output(prog, target, [x], [self.x_np], [out])
self.cinn_outputs = [res[0]]

def test_check_results(self):
self.check_outputs_and_grads()


class TestNormOpCase(TestCaseHelper):
def init_attrs(self):
self.class_name = "TestNormOpCase"
self.cls = TestNormOp
self.inputs = [
{
"x_shape": [1],
"p": "fro",
"axis": -1,
"keepdim": False,
"epsilon": 1.0e-10,
},
{
"x_shape": [32],
"p": "inf",
"axis": None,
"keepdim": False,
"epsilon": 1.0e-10,
},
{
"x_shape": [1024],
"p": "-inf",
"axis": -1,
"keepdim": True,
"epsilon": 1.0e-10,
},
{
"x_shape": [32, 64],
"p": "0",
"axis": None,
"keepdim": False,
"epsilon": 1.0e-10,
},
{
"x_shape": [2, 3, 4],
"p": "1",
"axis": -1,
"keepdim": True,
"epsilon": 1.0e-10,
},
{
"x_shape": [16, 8, 4, 2],
"p": "2",
"axis": -1,
"keepdim": False,
"epsilon": 1.0e-10,
},
{
"x_shape": [16, 8, 4, 2, 1],
"p": "fro",
"axis": None,
"keepdim": True,
"epsilon": 1.0e-10,
},
]

self.dtypes = [
{
"x_dtype": "float32",
},
{
"x_dtype": "float64",
},
]

self.attrs = []


if __name__ == "__main__":
TestNormOpCase().run()