Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Hackathon 182 Model] Update PPOCRV3 For RKNPU2 #1403

Merged
merged 12 commits into from
Feb 27, 2023
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions FastDeploy.cmake.in
Original file line number Diff line number Diff line change
Expand Up @@ -131,9 +131,9 @@ endif()

if(ENABLE_RKNPU2_BACKEND)
if(RKNN2_TARGET_SOC STREQUAL "RK356X")
set(RKNPU2_LIB ${CMAKE_CURRENT_LIST_DIR}/third_libs/install/rknpu2_runtime/RK356X/lib/librknn_api.so)
set(RKNPU2_LIB ${CMAKE_CURRENT_LIST_DIR}/third_libs/install/rknpu2_runtime/lib/librknnrt.so)
elseif (RKNN2_TARGET_SOC STREQUAL "RK3588")
set(RKNPU2_LIB ${CMAKE_CURRENT_LIST_DIR}/third_libs/install/rknpu2_runtime/RK3588/lib/librknn_api.so)
set(RKNPU2_LIB ${CMAKE_CURRENT_LIST_DIR}/third_libs/install/rknpu2_runtime/lib/librknnrt.so)
else ()
message(FATAL_ERROR "RKNN2_TARGET_SOC is not set, ref value: RK356X or RK3588")
endif()
Expand Down
11 changes: 6 additions & 5 deletions cmake/rknpu2.cmake
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# get RKNPU2_URL
set(RKNPU2_URL_BASE "https://bj.bcebos.com/fastdeploy/third_libs/")
set(RKNPU2_VERSION "1.4.0")
set(RKNPU2_FILE "rknpu2_runtime-linux-x64-${RKNPU2_VERSION}.tgz")
set(RKNPU2_VERSION "1.4.2b0")
set(RKNPU2_FILE "rknpu2_runtime-linux-aarch64-${RKNPU2_VERSION}-${RKNN2_TARGET_SOC}.tgz")
set(RKNPU2_URL "${RKNPU2_URL_BASE}${RKNPU2_FILE}")

# download_and_decompress
Expand All @@ -10,11 +10,12 @@ download_and_decompress(${RKNPU2_URL} ${CMAKE_CURRENT_BINARY_DIR}/${RKNPU2_FILE}
# set path
set(RKNPU_RUNTIME_PATH ${THIRD_PARTY_PATH}/install/rknpu2_runtime)

# include lib
if (EXISTS ${RKNPU_RUNTIME_PATH})
set(RKNN_RT_LIB ${RKNPU_RUNTIME_PATH}/${RKNN2_TARGET_SOC}/lib/librknnrt.so)
include_directories(${RKNPU_RUNTIME_PATH}/${RKNN2_TARGET_SOC}/include)
set(RKNN_RT_LIB ${RKNPU_RUNTIME_PATH}/lib/librknnrt.so)
include_directories(${RKNPU_RUNTIME_PATH}/include)
else ()
message(FATAL_ERROR "[rknpu2.cmake] download_and_decompress rknpu2_runtime error")
message(FATAL_ERROR "[rknpu2.cmake] RKNPU_RUNTIME_PATH does not exist.")
endif ()


77 changes: 77 additions & 0 deletions examples/vision/ocr/PP-OCRv3/rknpu2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
# PaddleOCR 模型部署

## PaddleOCR为多个模型组合串联任务,包含如下几个模型构成

* 文本检测 `DBDetector`
* [可选]方向分类 `Classifer` 用于调整进入文字识别前的图像方向
* 文字识别 `Recognizer` 用于从图像中识别出文字

根据不同场景, FastDeploy汇总提供如下OCR任务部署, 用户需同时下载3个模型与字典文件(或2个,分类器可选), 完成OCR整个预测流程

## PP-OCR 中英文系列模型

下表中的模型下载链接由PaddleOCR模型库提供, 详见[PP-OCR系列模型列表](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.6/doc/doc_ch/models_list.md)

| OCR版本 | 文本框检测 | 方向分类模型 | 文字识别 | 字典文件 | 说明 |
|:-------------------|:---------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------|
| ch_PP-OCRv3[推荐] | [ch_PP-OCRv3_det](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar) | [ch_ppocr_mobile_v2.0_cls](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) | [ch_PP-OCRv3_rec](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar) | [ppocr_keys_v1.txt](https://bj.bcebos.com/paddlehub/fastdeploy/ppocr_keys_v1.txt) | OCRv3系列原始超轻量模型,支持中英文、多语种文本检测 |
| en_PP-OCRv3[推荐] | [en_PP-OCRv3_det](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_det_infer.tar) | [ch_ppocr_mobile_v2.0_cls](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) | [en_PP-OCRv3_rec](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) | [en_dict.txt](https://bj.bcebos.com/paddlehub/fastdeploy/en_dict.txt) | OCRv3系列原始超轻量模型,支持英文与数字识别,除检测模型和识别模型的训练数据与中文模型不同以外,无其他区别 |
| ch_PP-OCRv2 | [ch_PP-OCRv2_det](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) | [ch_ppocr_mobile_v2.0_cls](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) | [ch_PP-OCRv2_rec](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) | [ppocr_keys_v1.txt](https://bj.bcebos.com/paddlehub/fastdeploy/ppocr_keys_v1.txt) | OCRv2系列原始超轻量模型,支持中英文、多语种文本检测 |
| ch_PP-OCRv2_mobile | [ch_ppocr_mobile_v2.0_det](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) | [ch_ppocr_mobile_v2.0_cls](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) | [ch_ppocr_mobile_v2.0_rec](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) | [ppocr_keys_v1.txt](https://bj.bcebos.com/paddlehub/fastdeploy/ppocr_keys_v1.txt) | OCRv2系列原始超轻量模型,支持中英文、多语种文本检测,比PPOCRv2更加轻量 |
| ch_PP-OCRv2_server | [ch_ppocr_server_v2.0_det](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) | [ch_ppocr_mobile_v2.0_cls](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) | [ch_ppocr_server_v2.0_rec](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) | [ppocr_keys_v1.txt](https://bj.bcebos.com/paddlehub/fastdeploy/ppocr_keys_v1.txt) | OCRv2服务器系列模型, 支持中英文、多语种文本检测,比超轻量模型更大,但效果更好 |

## 模型转换

在RKNPU2上使用PPOCR时,我们需要把Paddle静态图模型转为RKNN模型。

### 静态图模型转RKNN格式模型

rknn_toolkit2工具暂不支持直接从Paddle静态图模型直接转换为RKNN模型,因此我们需要先将Paddle静态图模型转为RKNN模型。

```bash
# 下载模型和字典文件
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_infer.tar
tar -xvf ch_PP-OCRv3_det_infer.tar

wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar -xvf ch_ppocr_mobile_v2.0_cls_infer.tar

wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_infer.tar
tar -xvf ch_PP-OCRv3_rec_infer.tar

# 转换模型到ONNX格式的模型
paddle2onnx --model_dir ch_PP-OCRv3_det_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
--enable_dev_version True
paddle2onnx --model_dir ch_ppocr_mobile_v2.0_cls_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
--enable_dev_version True
paddle2onnx --model_dir ch_PP-OCRv3_rec_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
--enable_dev_version True

# 固定模型的输入shape
python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
--output_model ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
--input_shape_dict "{'x':[1,3,960,960]}"
python -m paddle2onnx.optimize --input_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
--output_model ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
--input_shape_dict "{'x':[1,3,48,192]}"
python -m paddle2onnx.optimize --input_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
--output_model ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
--input_shape_dict "{'x':[1,3,48,320]}"

# 转换ONNX模型到RKNN模型
python tools/rknpu2/export.py --config_path tools/rknpu2/config/ppocrv3_det.yaml \
--target_platform rk3588
python tools/rknpu2/export.py --config_path tools/rknpu2/config/ppocrv3_rec.yaml \
--target_platform rk3588
python tools/rknpu2/export.py --config_path tools/rknpu2/config/ppocrv3_cls.yaml \
--target_platform rk3588
```
14 changes: 14 additions & 0 deletions examples/vision/ocr/PP-OCRv3/rknpu2/cpp/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)

# 指定下载解压后的fastdeploy库路径
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")

include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)

# 添加FastDeploy依赖头文件
include_directories(${FASTDEPLOY_INCS})

add_executable(infer_static_shape_demo ${PROJECT_SOURCE_DIR}/infer_static_shape.cc)
# 添加FastDeploy库依赖
target_link_libraries(infer_static_shape_demo ${FASTDEPLOY_LIBS})
55 changes: 55 additions & 0 deletions examples/vision/ocr/PP-OCRv3/rknpu2/cpp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
English | [简体中文](README_CN.md)
# PPOCRv3 C++ Deployment Example

This directory provides examples that `infer.cc` fast finishes the deployment of PPOCRv3 on CPU/GPU and GPU accelerated by TensorRT.

Two steps before deployment

- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)

Taking the CPU inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.

```
mkdir build
cd build
# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j


# Download model, image, and dictionary files
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg

wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt

# CPU推理
./infer_static_shape_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
./ppocr_keys_v1.txt \
./12.jpg \
0
# RKNPU推理
./infer_static_shape_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn \
./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn \
./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn \
./ppocr_keys_v1.txt \
./12.jpg \
1
```

The above command works for Linux or MacOS. For SDK in Windows, refer to:
- [How to use FastDeploy C++ SDK in Windows](../../../../../docs/cn/faq/use_sdk_on_windows.md)

The visualized result after running is as follows

<img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg">

## Other Documents

- [C++ API Reference](https://baidu-paddle.github.io/fastdeploy-api/cpp/html/)
- [PPOCR Model Description](../../)
- [PPOCRv3 Python Deployment](../python)
- [Model Prediction Results](../../../../../../docs/en/faq/how_to_change_backend.md)
- [How to switch the model inference backend engine](../../../../../../docs/en/faq/how_to_change_backend.md)
63 changes: 63 additions & 0 deletions examples/vision/ocr/PP-OCRv3/rknpu2/cpp/README_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
[English](README_CN.md) | 简体中文
# PPOCRv3 C++部署示例

本目录下提供`infer.cc`快速完成PPOCRv3在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。

在部署前,需确认你已经成功完成以下两个操作:

* [正确编译FastDeploy SDK](../../../../../../docs/cn/faq/rknpu2/build.md).
* [成功转换模型](../README.md).

在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本1.0.3以上(x.x.x>1.0.3), RKNN版本在1.4.1b22以上。

```
mkdir build
cd build
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

# 下载图片和字典文件
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/doc/imgs/12.jpg
wget https://gitee.com/paddlepaddle/PaddleOCR/raw/release/2.6/ppocr/utils/ppocr_keys_v1.txt


# 拷贝RKNN模型到build目录

# CPU推理
./infer_static_shape_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer.onnx \
./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v2.0_cls_infer.onnx \
./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer.onnx \
./ppocr_keys_v1.txt \
./12.jpg \
0
# RKNPU推理
./infer_static_shape_demo ./ch_PP-OCRv3_det_infer/ch_PP-OCRv3_det_infer_rk3588_unquantized.rknn \
./ch_ppocr_mobile_v2.0_cls_infer/ch_ppocr_mobile_v20_cls_infer_rk3588_unquantized.rknn \
./ch_PP-OCRv3_rec_infer/ch_PP-OCRv3_rec_infer_rk3588_unquantized.rknn \
./ppocr_keys_v1.txt \
./12.jpg \
1
```

运行完成可视化结果如下图所示:

<img width="640" src="https://user-images.githubusercontent.com/109218879/185826024-f7593a0c-1bd2-4a60-b76c-15588484fa08.jpg">

结果输出如下:

```text
det boxes: [[276,174],[285,173],[285,178],[276,179]]rec text: rec score:0.000000 cls label: 1 cls score: 0.766602
det boxes: [[43,408],[483,390],[483,431],[44,449]]rec text: 上海斯格威铂尔曼大酒店 rec score:0.888450 cls label: 0 cls score: 1.000000
det boxes: [[186,456],[399,448],[399,480],[186,488]]rec text: 打浦路15号 rec score:0.988769 cls label: 0 cls score: 1.000000
det boxes: [[18,501],[513,485],[514,537],[18,554]]rec text: 绿洲仕格维花园公寓 rec score:0.992730 cls label: 0 cls score: 1.000000
det boxes: [[78,553],[404,541],[404,573],[78,585]]rec text: 打浦路252935号 rec score:0.983545 cls label: 0 cls score: 1.000000
Visualized result saved in ./vis_result.jpg
```


## 其它文档

- [C++ API查阅](https://baidu-paddle.github.io/fastdeploy-api/cpp/html/)
- [PPOCR 系列模型介绍](../../../README_CN.md)
- [PPOCRv3 Python部署](../python)
- [模型预测结果说明](../../../../../../docs/cn/faq/how_to_change_backend.md)
126 changes: 126 additions & 0 deletions examples/vision/ocr/PP-OCRv3/rknpu2/cpp/infer_static_shape.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"

void InitAndInfer(const std::string &det_model_file,
const std::string &cls_model_file,
const std::string &rec_model_file,
const std::string &rec_label_file,
const std::string &image_file,
const fastdeploy::RuntimeOption &option,
const fastdeploy::ModelFormat &format) {
auto det_params_file = "";
auto cls_params_file = "";
auto rec_params_file = "";

auto det_option = option;
auto cls_option = option;
auto rec_option = option;

if (format == fastdeploy::ONNX) {
std::cout << "ONNX Model" << std::endl;
}

auto det_model = fastdeploy::vision::ocr::DBDetector(
det_model_file, det_params_file, det_option, format);
auto cls_model = fastdeploy::vision::ocr::Classifier(
cls_model_file, cls_params_file, cls_option, format);
auto rec_model = fastdeploy::vision::ocr::Recognizer(
rec_model_file, rec_params_file, rec_label_file, rec_option, format);

if (format == fastdeploy::RKNN) {
cls_model.GetPreprocessor().DisableNormalize();
cls_model.GetPreprocessor().DisablePermute();

det_model.GetPreprocessor().DisableNormalize();
det_model.GetPreprocessor().DisablePermute();

rec_model.GetPreprocessor().DisableNormalize();
rec_model.GetPreprocessor().DisablePermute();
}
det_model.GetPreprocessor().SetStaticShapeInfer(true);
rec_model.GetPreprocessor().SetStaticShapeInfer(true);

assert(det_model.Initialized());
assert(cls_model.Initialized());
assert(rec_model.Initialized());

// The classification model is optional, so the PP-OCR can also be connected
// in series as follows auto ppocr_v3 =
// fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
auto ppocr_v3 =
fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);

// When users enable static shape infer for rec model, the batch size of cls
// and rec model must to be set to 1.
ppocr_v3.SetClsBatchSize(1);
ppocr_v3.SetRecBatchSize(1);

if (!ppocr_v3.Initialized()) {
std::cerr << "Failed to initialize PP-OCR." << std::endl;
return;
}

auto im = cv::imread(image_file);

fastdeploy::vision::OCRResult result;
if (!ppocr_v3.Predict(im, &result)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

std::cout << result.Str() << std::endl;

auto vis_im = fastdeploy::vision::VisOcr(im, result);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

int main(int argc, char *argv[]) {
if (argc < 7) {
std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
"path/to/rec_model path/to/rec_label_file path/to/image "
"run_option, "
"e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
"./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
"./ppocr_keys_v1.txt ./12.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with ascend."
<< std::endl;
return -1;
}

fastdeploy::RuntimeOption option;
fastdeploy::ModelFormat format;
int flag = std::atoi(argv[6]);

if (flag == 0) {
option.UseCpu();
format = fastdeploy::ONNX;
} else if (flag == 1) {
option.UseRKNPU2();
format = fastdeploy::RKNN;
}

std::string det_model_dir = argv[1];
std::string cls_model_dir = argv[2];
std::string rec_model_dir = argv[3];
std::string rec_label_file = argv[4];
std::string test_image = argv[5];
InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file,
test_image, option, format);
return 0;
}
Loading