Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Model] Add Solov2 For PaddleDetection #1435

Merged
merged 28 commits into from
Mar 8, 2023
Merged
Show file tree
Hide file tree
Changes from 23 commits
Commits
Show all changes
28 commits
Select commit Hold shift + click to select a range
129c9e5
update solov2
Zheng-Bicheng Feb 22, 2023
bc9530d
Repair note
Zheng-Bicheng Feb 22, 2023
d4d6d5a
update solov2 postprocess
Zheng-Bicheng Feb 23, 2023
cc9b6eb
update
Zheng-Bicheng Feb 24, 2023
084f1ab
update solov2
Zheng-Bicheng Feb 25, 2023
041c062
update solov2
Zheng-Bicheng Feb 25, 2023
0a72360
fixed bug
Zheng-Bicheng Feb 25, 2023
5ab6685
fixed bug
Zheng-Bicheng Feb 25, 2023
1e70204
update solov2
Zheng-Bicheng Feb 26, 2023
b65d82d
Merge remote-tracking branch 'upstream/develop' into solov2
Zheng-Bicheng Feb 26, 2023
837baee
update solov2
Zheng-Bicheng Feb 26, 2023
9563742
fix build android bug
Zheng-Bicheng Feb 26, 2023
cc945ca
update docs
Zheng-Bicheng Feb 26, 2023
1335768
update docs
Zheng-Bicheng Feb 27, 2023
6b8380d
Merge remote-tracking branch 'upstream/develop' into solov2
Zheng-Bicheng Feb 27, 2023
06fb7d3
update docs
Zheng-Bicheng Feb 27, 2023
3ef065f
update
Zheng-Bicheng Mar 1, 2023
76c1967
Merge remote-tracking branch 'upstream/develop' into solov2
Zheng-Bicheng Mar 1, 2023
e0e9cf8
update
Zheng-Bicheng Mar 1, 2023
7792233
Merge remote-tracking branch 'upstream/develop' into solov2
Zheng-Bicheng Mar 3, 2023
4ef9000
update arch and docs
Zheng-Bicheng Mar 3, 2023
4650126
Merge branch 'develop' into solov2
Zheng-Bicheng Mar 4, 2023
0ad0a70
update
Zheng-Bicheng Mar 4, 2023
039109e
update
Zheng-Bicheng Mar 5, 2023
5589877
Merge branch 'develop' into solov2
DefTruth Mar 6, 2023
97c0038
update solov2 python
Zheng-Bicheng Mar 6, 2023
77550c7
Merge remote-tracking branch 'upstream/develop' into solov2
Zheng-Bicheng Mar 7, 2023
0c1685e
Merge remote-tracking branch 'origin/solov2' into solov2
Zheng-Bicheng Mar 7, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions examples/vision/detection/paddledetection/jetson/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
English | [简体中文](README_CN.md)

# PaddleDetection Model Deployment
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

为什么需要额外新增一个jetson的部署目录,复用原cpp目录不行么

Copy link
Collaborator Author

@Zheng-Bicheng Zheng-Bicheng Mar 6, 2023

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

PaddlePaddle/Paddle#50631 (comment) 这里任务要求是放到这个目录


FastDeploy supports the SOLOV2 model of [PaddleDetection version 2.6](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6).

You can enter the following command to get the static diagram model of SOLOV2.

```bash
# install PaddleDetection
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection

python tools/export_model.py -c configs/solov2/solov2_r50_fpn_1x_coco.yml --output_dir=./inference_model \
-o weights=https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_1x_coco.pdparams
```

## Detailed Deployment Documents

- [Python Deployment](python)
- [C++ Deployment](cpp)
20 changes: 20 additions & 0 deletions examples/vision/detection/paddledetection/jetson/README_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,20 @@
[English](README.md) | 简体中文
# PaddleDetection模型部署

FastDeploy支持[PaddleDetection 2.6](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6)版本的SOLOv2模型,

你可以输入以下命令得到SOLOv2的静态图模型。

```bash
# install PaddleDetection
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection

python tools/export_model.py -c configs/solov2/solov2_r50_fpn_1x_coco.yml --output_dir=./inference_model \
-o weights=https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_1x_coco.pdparams
```

## 详细部署文档

- [Python部署](python)
- [C++部署](cpp)
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)

option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")

include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)

include_directories(${FASTDEPLOY_INCS})

add_executable(infer_solov2_demo ${PROJECT_SOURCE_DIR}/infer_solov2.cc)
target_link_libraries(infer_solov2_demo ${FASTDEPLOY_LIBS})
28 changes: 28 additions & 0 deletions examples/vision/detection/paddledetection/jetson/cpp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
English | [简体中文](README_CN.md)
# PaddleDetection C++ Deployment Example

This directory provides examples that `infer_xxx.cc` fast finishes the deployment of PaddleDetection models, including SOLOv2 on CPU/GPU and GPU accelerated by TensorRT.

Before deployment, two steps require confirmation

- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)
- 2. Download the precompiled deployment library and samples code according to your development environment. Refer to [FastDeploy Precompiled Library](../../../../../../docs/en/build_and_install/download_prebuilt_libraries.md)

Taking inference on Linux as an example, the compilation test can be completed by executing the following command in this directory. FastDeploy version 0.7.0 or above (x.x.x>=0.7.0) is required to support this model.

```bash
mkdir build
cd build

# Download the FastDeploy precompiled library. Users can choose your appropriate version in the `FastDeploy Precompiled Library` mentioned above
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU inference
./infer_solov2_demo ./solov2_r50_fpn_1x_coco 000000014439.jpg 0
# GPU inference
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
```
29 changes: 29 additions & 0 deletions examples/vision/detection/paddledetection/jetson/cpp/README_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
[English](README.md) | 简体中文
# PaddleDetection C++部署示例

本目录下提供`infer_xxx.cc`快速完成PaddleDetection模型包括SOLOv2在CPU/GPU,以及GPU上通过TensorRT加速部署的示例。

在部署前,需确认以下两个步骤

- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. 根据开发环境,下载预编译部署库和examples代码,参考[FastDeploy预编译库](../../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

以Linux上推理为例,在本目录执行如下命令即可完成编译测试,支持此模型需保证FastDeploy版本0.7.0以上(x.x.x>=0.7.0)


```bash
mkdir build
cd build

# 下载FastDeploy预编译库,用户可在上文提到的`FastDeploy预编译库`中自行选择合适的版本使用
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j

wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
# CPU推理
./infer_solov2_demo ./solov2_r50_fpn_1x_coco 000000014439.jpg 0
# GPU推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 1
```
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"

#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif

void CpuInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseCpu();
auto model = fastdeploy::vision::detection::SOLOv2(model_file, params_file,
config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}

auto im = cv::imread(image_file);

fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

void GpuInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";

auto option = fastdeploy::RuntimeOption();
option.UseGpu();
auto model = fastdeploy::vision::detection::SOLOv2(model_file, params_file,
config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}

auto im = cv::imread(image_file);

fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}

std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
<< "Usage: infer_demo path/to/model_dir path/to/image run_option, "
"e.g ./infer_model ./ppyolo_dirname ./test.jpeg 0"
<< std::endl;
std::cout << "The data type of run_option is int, 0: run with cpu; 1: run "
"with gpu; 2: run with kunlunxin."
<< std::endl;
return -1;
}

if (std::atoi(argv[3]) == 0) {
CpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
}
return 0;
}
96 changes: 96 additions & 0 deletions examples/vision/detection/paddledetection/jetson/python/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,96 @@
English | [简体中文](README_CN.md)
# PaddleDetection Python Deployment Example

Before deployment, two steps require confirmation.

- 1. Software and hardware should meet the requirements. Please refer to [FastDeploy Environment Requirements](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)
- 2. Install FastDeploy Python whl package. Refer to [FastDeploy Python Installation](../../../../../docs/cn/build_and_install/download_prebuilt_libraries.md)

This directory provides examples that `infer_xxx.py` fast finishes the deployment of PPYOLOE/PicoDet models on CPU/GPU and GPU accelerated by TensorRT. The script is as follows

```bash
# Download deployment example code
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/detection/paddledetection/python/

# Download the PPYOLOE model file and test images
wget https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz
wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/000000014439.jpg
tar xvf ppyoloe_crn_l_300e_coco.tgz

# CPU inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device cpu
# GPU inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu
# TensorRT inference on GPU (Attention: It is somewhat time-consuming for the operation of model serialization when running TensorRT inference for the first time. Please be patient.)
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
# Kunlunxin XPU Inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device kunlunxin
# Huawei Ascend Inference
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device ascend
```

The visualized result after running is as follows
<div align="center">
<img src="https://user-images.githubusercontent.com/19339784/184326520-7075e907-10ed-4fad-93f8-52d0e35d4964.jpg", width=480px, height=320px />
</div>

## PaddleDetection Python Interface

```python
fastdeploy.vision.detection.PPYOLOE(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PicoDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOX(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.YOLOv3(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PPYOLO(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.FasterRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.MaskRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.SSD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv5(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv6(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PaddleYOLOv7(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.RTMDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
Zheng-Bicheng marked this conversation as resolved.
Show resolved Hide resolved
fastdeploy.vision.detection.CascadeRCNN(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PSSDet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.RetinaNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.PPYOLOESOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.FCOS(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.TTFNet(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.TOOD(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.GFL(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
fastdeploy.vision.detection.SOLOv2(model_file, params_file, config_file, runtime_option=None, model_format=ModelFormat.PADDLE)
```

PaddleDetection model loading and initialization, among which model_file and params_file are the exported Paddle model format. config_file is the configuration yaml file exported by PaddleDetection simultaneously

**Parameter**

> * **model_file**(str): Model file path
> * **params_file**(str): Parameter file path
> * **config_file**(str): Inference configuration yaml file path
> * **runtime_option**(RuntimeOption): Backend inference configuration. None by default. (use the default configuration)
> * **model_format**(ModelFormat): Model format. Paddle format by default

### predict Function

PaddleDetection models, including PPYOLOE/PicoDet/PaddleYOLOX/YOLOv3/PPYOLO/FasterRCNN, all provide the following member functions for image detection
> ```python
> PPYOLOE.predict(image_data, conf_threshold=0.25, nms_iou_threshold=0.5)
> ```
>
> Model prediction interface. Input images and output results directly.
>
> **Parameter**
>
> > * **image_data**(np.ndarray): Input data in HWC or BGR format

> **Return**
>
> > Return `fastdeploy.vision.DetectionResult` structure. Refer to [Vision Model Prediction Results](../../../../../docs/api/vision_results/) for the description of the structure.

## Other Documents

- [PaddleDetection Model Description](..)
- [PaddleDetection C++ Deployment](../cpp)
- [Model Prediction Results](../../../../../docs/api/vision_results/)
- [How to switch the model inference backend engine](../../../../../docs/cn/faq/how_to_change_backend.md)
Loading