Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add warning for server hangs #2333

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions llm/fastdeploy_llm/config.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@ def __init__(self, model_dir, decode_strategy="sampling", mp_num=None):
self.model_prompt_dir_path = config.get("prompt_dir_path",
"./prompt_embedding")
self.max_prefix_len = config.get("max_prefix_len", 128)
self.inference_response_timeout = 20 # timeout for inference engine output every token

def is_arch(self, arch):
return arch in self.architecture
Expand Down Expand Up @@ -158,3 +159,10 @@ def load_environment_variables(self):
"detect environment DISABLE_DYNAMIC_BATCHING={}, will reset `disable_dynamic_batching` to {}!".
format(self.disable_dynamic_batching,
self.disable_dynamic_batching))

if os.getenv("INFERENCE_RESPONSE_TIMEOUT", None):
self.inference_response_timeout = int(os.getenv("INFERENCE_RESPONSE_TIMEOUT"))
logger.warning(
"detect environment INFERENCE_RESPONSE_TIMEOUT={}, will reset `inference_response_timeout` to {}!".
format(self.inference_response_timeout,
self.inference_response_timeout))
32 changes: 25 additions & 7 deletions llm/fastdeploy_llm/engine.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,11 @@ def parse_args():
type=int,
default=64,
help='num_attention_heads')
parser.add_argument(
'--num_key_value_heads',
type=int,
default=4,
help='num_key_value_heads')
parser.add_argument(
'--hidden_size', type=int, default=8192, help='hidden_size')
parser.add_argument(
Expand Down Expand Up @@ -140,15 +145,28 @@ def init_dist_env(world_size, seed=20):

cache_kvs = []
for _ in range(args.num_layers):
cache_kvs.append(
paddle.cast(
paddle.to_tensor(
np.zeros(
(2, args.batch_size, args.num_attention_heads // nranks,
if 'llama' in args.architecture:
## llama in PaddleNLP after https://github.com/PaddlePaddle/PaddleNLP/pull/7516/files changed cache kv shape
cache_kvs.append(
paddle.cast(
paddle.to_tensor(
np.zeros(
(2, args.batch_size, args.num_key_value_heads,
args.max_seq_len + args.max_dec_len, args.hidden_size //
args.num_attention_heads),
dtype='float32')),
args.dtype))
dtype='float32')),
args.dtype))

else:
cache_kvs.append(
paddle.cast(
paddle.to_tensor(
np.zeros(
(2, args.batch_size, args.num_attention_heads // nranks,
args.max_seq_len + args.max_dec_len, args.hidden_size //
args.num_attention_heads),
dtype='float32')),
args.dtype))

pre_ids = paddle.to_tensor(np.full((args.batch_size, 2048), -1, dtype='int64'))
tgt_generation_mask = paddle.zeros(
Expand Down
11 changes: 10 additions & 1 deletion llm/fastdeploy_llm/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@
from fastdeploy_llm.utils.utils import deserialize_from_file, get_files, remove_files
from fastdeploy_llm.config import Config
from fastdeploy_llm.task import Task, TaskStatus
from fastdeploy_llm.utils.logging_util import logger
from fastdeploy_llm.utils.logging_util import logger, warning_logger
from fastdeploy_llm.utils.logging_util import error_format, ErrorCode, ErrorType

from concurrent.futures import ThreadPoolExecutor

Expand Down Expand Up @@ -229,6 +230,7 @@ def async_predict(self, batch_tasks, stop_num=None):

def _update_task_results(self, tasks):
step_index = 1
last_response_time = time.time()
while True:
filepath = f"./real_time_save.temp_ids_rank_0_step_{step_index}"
if os.path.exists(filepath):
Expand All @@ -240,6 +242,7 @@ def _update_task_results(self, tasks):
except:
fin.close()
token_ids = deserialize_from_file(fin)
last_response_time = time.time()
fin.close()
step_index += 1
for b, token_id in enumerate(token_ids):
Expand Down Expand Up @@ -283,6 +286,12 @@ def _update_task_results(self, tasks):
else:
if not self._is_engine_busy():
break
if time.time() - last_response_time > self.config.inference_response_timeout:
error_type = ErrorType.Server
error_code = ErrorCode.S0003
error_info = "Inference engine output token timeout due to some unexpectable exceptions."
error_msg = error_format.format(error_type.name, error_code.name, error_info)
warning_logger.error(error_msg)
ret = self.engine_proc.poll()
if ret is not None:
logger.error(
Expand Down
3 changes: 2 additions & 1 deletion llm/fastdeploy_llm/serving/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,4 +12,5 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from .triton_model import TritonPythonModel
from .triton_model_stream import TritonPythonModelStream
from .triton_model_nonstream import TritonPythonModelNonStream
14 changes: 10 additions & 4 deletions llm/fastdeploy_llm/serving/serving_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,13 +77,17 @@ def runner(self):
get_tasks = list()
for i in range(get_tasks_num):
try:
task = self.requests_queue.get(timeout=0.1)
if i == 0:
task = self.requests_queue.get() # only block when get first data
else:
task = self.requests_queue.get(timeout=0.01) # wait only 10ms for batch
get_tasks.append(task)
except Exception as e:
break
if len(get_tasks) == 0 and batch_tasks.unfinished_size() == 0:
time.sleep(0.1)
continue

# if len(get_tasks) == 0 and batch_tasks.unfinished_size() == 0: # should not arrive here for performance
# time.sleep(0.1)
# continue

sender_size = 0
if self.model.stream_sender is not None:
Expand Down Expand Up @@ -120,6 +124,8 @@ def runner(self):
logger.debug(
"BatchTasks with task_id={} is send to engine to predict.".
format([t.task_id for t in batch_tasks.tasks]))
for task in batch_tasks.tasks:
task.set_inference_start_time(time.time())
self.model.predict(batch_tasks, stop_nums)
logger.debug("The last batch tasks' status = {}.".format(
[t.status for t in batch_tasks.tasks]))
Expand Down
Loading