Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

单测case覆盖 #453

Merged
merged 6 commits into from
Aug 23, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 7 additions & 3 deletions paconvert/api_mapping.json
Original file line number Diff line number Diff line change
Expand Up @@ -6029,7 +6029,11 @@
"args_list": [
"graceful",
"timeout"
]
],
"kwargs_change": {
"graceful": "",
"timeout": ""
}
},
"torch.distributed.scatter": {
"Matcher": "ScatterMatcher",
Expand Down Expand Up @@ -11811,8 +11815,8 @@
"input",
"grid",
"mode",
"align_corners",
"padding_mode"
"padding_mode",
"align_corners"
],
"kwargs_change": {
"input": "x"
Expand Down
16 changes: 6 additions & 10 deletions tests/test_cuda_amp_autocast.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,9 +90,8 @@ def test_case_4():


@pytest.mark.skipif(
condition=not paddle.device.is_compiled_with_cuda()
or not paddle.device.cuda.get_device_properties(0).major >= 8,
reason="computational capabilities less 8",
condition=not paddle.device.is_compiled_with_cuda(),
reason="can only run on paddle with CUDA",
)
def test_case_5():
pytorch_code = textwrap.dedent(
Expand All @@ -110,11 +109,9 @@ def test_case_5():
obj.run(pytorch_code, ["result"])


# generated by validate_unittest autofix, based on test_case_5
@pytest.mark.skipif(
condition=not paddle.device.is_compiled_with_cuda()
or not paddle.device.cuda.get_device_properties(0).major >= 8,
reason="computational capabilities less 8",
condition=not paddle.device.is_compiled_with_cuda(),
reason="can only run on paddle with CUDA",
)
def test_case_6():
pytorch_code = textwrap.dedent(
Expand All @@ -134,9 +131,8 @@ def test_case_6():

# generated by validate_unittest autofix, based on test_case_5
@pytest.mark.skipif(
condition=not paddle.device.is_compiled_with_cuda()
or not paddle.device.cuda.get_device_properties(0).major >= 8,
reason="computational capabilities less 8",
condition=not paddle.device.is_compiled_with_cuda(),
reason="can only run on paddle with CUDA",
)
def test_case_7():
pytorch_code = textwrap.dedent(
Expand Down
12 changes: 12 additions & 0 deletions tests/test_diff.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,3 +130,15 @@ def test_case_9():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_10():
pytorch_code = textwrap.dedent(
"""
import torch
x = torch.tensor([1, 3, 2])
b = torch.tensor([4, 5])
result = torch.diff(x, 1, 0, b, b)
"""
)
obj.run(pytorch_code, ["result"])
105 changes: 99 additions & 6 deletions tests/test_distributed_rpc_shutdown.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,17 +14,11 @@

import textwrap

import paddle
import pytest
from apibase import APIBase

obj = APIBase("torch.distributed.rpc.shutdown")


@pytest.mark.skipif(
condition=paddle.is_compiled_with_cinn(),
reason="WITH_RPC = OFF, if WITH_CINN = ON.",
)
def test_case_1():
pytorch_code = textwrap.dedent(
"""
Expand Down Expand Up @@ -56,3 +50,102 @@ def test_case_1():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
Xuxuanang marked this conversation as resolved.
Show resolved Hide resolved
pytorch_code = textwrap.dedent(
"""
import os
import torch
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
start = 25000
end = 30000
for port in range(start, end):
try:
s.bind(('localhost', port))
s.close()
break
except socket.error:
continue
print("port: " + str(port))

from torch.distributed import rpc
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
os.environ['PADDLE_MASTER_ENDPOINT'] = 'localhost:' + str(port)
rpc.init_rpc(
"worker1",
rank=0,
world_size=1
)
result = rpc.shutdown(graceful=False, timeout=2)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import os
import torch
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
start = 25000
end = 30000
for port in range(start, end):
try:
s.bind(('localhost', port))
s.close()
break
except socket.error:
continue
print("port: " + str(port))

from torch.distributed import rpc
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
os.environ['PADDLE_MASTER_ENDPOINT'] = 'localhost:' + str(port)
rpc.init_rpc(
"worker1",
rank=0,
world_size=1
)
result = rpc.shutdown(timeout=2, graceful=False)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import os
import torch
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
start = 25000
end = 30000
for port in range(start, end):
try:
s.bind(('localhost', port))
s.close()
break
except socket.error:
continue
print("port: " + str(port))

from torch.distributed import rpc
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
os.environ['PADDLE_MASTER_ENDPOINT'] = 'localhost:' + str(port)
rpc.init_rpc(
"worker1",
rank=0,
world_size=1
)
result = rpc.shutdown(True, 1)
"""
)
obj.run(pytorch_code, ["result"])
42 changes: 42 additions & 0 deletions tests/test_distributions_AffineTransform.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,3 +45,45 @@ def test_case_2():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch

x = torch.tensor(1.)
y = torch.tensor(2.)
affine = torch.distributions.AffineTransform(x, y, 1, 1)
result = affine.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch

x = torch.tensor(1.)
y = torch.tensor(2.)
affine = torch.distributions.AffineTransform(loc=x, scale=y, event_dim=1, cache_size=1)
result = affine.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch

x = torch.tensor(1.)
y = torch.tensor(2.)
affine = torch.distributions.AffineTransform(event_dim=1, cache_size=1, loc=x, scale=y)
result = affine.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])
24 changes: 24 additions & 0 deletions tests/test_distributions_ExpTransform.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,3 +29,27 @@ def test_case_1():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch

exp = torch.distributions.ExpTransform(cache_size=1)
result = exp.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch

exp = torch.distributions.ExpTransform(1)
result = exp.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])
36 changes: 36 additions & 0 deletions tests/test_distributions_PowerTransform.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,3 +29,39 @@ def test_case_1():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_2():
pytorch_code = textwrap.dedent(
"""
import torch

power = torch.distributions.PowerTransform(exponent=torch.tensor(2.),cache_size=1)
result = power.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])


def test_case_3():
pytorch_code = textwrap.dedent(
"""
import torch

power = torch.distributions.PowerTransform(cache_size=1, exponent=torch.tensor(2.))
result = power.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch

power = torch.distributions.PowerTransform(torch.tensor(2.), 0)
result = power.forward_shape([1, 2])
"""
)
obj.run(pytorch_code, ["result"])
13 changes: 13 additions & 0 deletions tests/test_histogramdd.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,3 +87,16 @@ def test_case_5():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_6():
pytorch_code = textwrap.dedent(
"""
import torch
x = torch.tensor([[0., 1.], [1., 0.], [2.,0.], [2., 2.]])
bins = [3,3]
weights = torch.tensor([1., 2., 4., 8.])
result = torch.histogramdd(x, bins)
"""
)
obj.run(pytorch_code, ["result"])
33 changes: 33 additions & 0 deletions tests/test_hub_download_url_to_file.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,3 +65,36 @@ def test_case_3():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_4():
pytorch_code = textwrap.dedent(
"""
import torch
result = torch.hub.download_url_to_file(url='https://paddle-paconvert.bj.bcebos.com/model.params', dst='/tmp/temporary_file',
hash_prefix="e1bf0a03102811bb2168e9952fe4edfa09cceb3343278bd4e5876b33b6889e9b", progress=False)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch
result = torch.hub.download_url_to_file(url='https://paddle-paconvert.bj.bcebos.com/model.params', dst='/tmp/temporary_file',
hash_prefix="e1bf0a03102811bb2168e9952fe4edfa09cceb3343278bd4e5876b33b6889e9b", progress=False)
"""
)
obj.run(pytorch_code, ["result"])


def test_case_6():
pytorch_code = textwrap.dedent(
"""
import torch
result = torch.hub.download_url_to_file(dst='/tmp/temporary_file',
hash_prefix="e1bf0a03102811bb2168e9952fe4edfa09cceb3343278bd4e5876b33b6889e9b", url='https://paddle-paconvert.bj.bcebos.com/model.params', progress=False)
"""
)
obj.run(pytorch_code, ["result"])
14 changes: 14 additions & 0 deletions tests/test_inference_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,3 +73,17 @@ def test_case_4():
"""
)
obj.run(pytorch_code, ["result"])


def test_case_5():
pytorch_code = textwrap.dedent(
"""
import torch
x = torch.ones(1, 2, 3, requires_grad=True)
@torch.inference_mode(mode= False)
def doubler(x):
return x * 2
result = (doubler(x).requires_grad, doubler(x))
"""
)
obj.run(pytorch_code, ["result"])
Loading