-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add flatten_contiguous_range OpConvert for Paddle-TRT (#38922)
* add trt_convert_flatten_contiguous_rang op * trt version >7,support trt_convert_flatten_contiguous_rang * trt version >7,support trt_convert_flatten_contiguous_rang * trt version >7,support trt_convert_flatten_contiguous_rang * test cast add trt version >=7 skip
- Loading branch information
heliqi
authored
Jan 14, 2022
1 parent
87ee3e4
commit 050aa6f
Showing
6 changed files
with
290 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
136 changes: 136 additions & 0 deletions
136
paddle/fluid/inference/tensorrt/convert/flatten_contiguous_range_op.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/inference/tensorrt/convert/op_converter.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
class Scope; | ||
namespace proto { | ||
class OpDesc; | ||
} // namespace proto | ||
} // namespace framework | ||
} // namespace paddle | ||
|
||
namespace paddle { | ||
namespace inference { | ||
namespace tensorrt { | ||
/* | ||
* flatten_contiguous_range trt converter | ||
*/ | ||
class FlattenContiguousRangeOpConverter : public OpConverter { | ||
public: | ||
void operator()(const framework::proto::OpDesc& op, | ||
const framework::Scope& scope, bool test_mode) override { | ||
framework::OpDesc op_desc(op, nullptr); | ||
// Declare inputs | ||
auto* input = engine_->GetITensor(op_desc.Input("X")[0]); | ||
int dims = input->getDimensions().nbDims; | ||
int start_axis = BOOST_GET_CONST(int, op_desc.GetAttr("start_axis")); | ||
int stop_axis = BOOST_GET_CONST(int, op_desc.GetAttr("stop_axis")); | ||
|
||
nvinfer1::IShuffleLayer* layer = nullptr; | ||
if (!engine_->with_dynamic_shape()) { | ||
if (start_axis < 0) start_axis += dims + 1; | ||
if (stop_axis < 0) stop_axis += dims + 1; | ||
int dim_prod = 1; | ||
nvinfer1::Dims flatten_dim; | ||
flatten_dim.nbDims = dims - (stop_axis - start_axis); | ||
for (int i = 0, j = 0; i < dims; ++i) { | ||
if (start_axis <= i + 1 && i + 1 <= stop_axis) { | ||
int dim_i = input->getDimensions().d[i]; | ||
PADDLE_ENFORCE_GT(dim_i, 0, platform::errors::InvalidArgument( | ||
"flatten_contiguous_range input dim " | ||
"should be > 0, but got %d.", | ||
dim_i)); | ||
dim_prod *= dim_i; | ||
if (i + 1 == stop_axis) { | ||
flatten_dim.d[j++] = dim_prod; | ||
} | ||
} else { | ||
flatten_dim.d[j++] = input->getDimensions().d[i]; | ||
} | ||
} | ||
layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); | ||
layer->setReshapeDimensions(flatten_dim); | ||
} else { | ||
if (start_axis < 0) start_axis += dims; | ||
if (stop_axis < 0) stop_axis += dims; | ||
auto* shape_layer = TRT_ENGINE_ADD_LAYER(engine_, Shape, *input); | ||
auto* shape_layer_itensor = shape_layer->getOutput(0); | ||
|
||
nvinfer1::Dims start_dim, size_dim, stride_dim; | ||
start_dim.nbDims = 1; | ||
size_dim.nbDims = 1; | ||
stride_dim.nbDims = 1; | ||
start_dim.d[0] = start_axis; | ||
size_dim.d[0] = stop_axis - start_axis + 1; | ||
stride_dim.d[0] = 1; | ||
auto* slice_layer = | ||
TRT_ENGINE_ADD_LAYER(engine_, Slice, *shape_layer_itensor, start_dim, | ||
size_dim, stride_dim); | ||
uint32_t reduce_dim = 1; | ||
auto* reduce_prod_layer = TRT_ENGINE_ADD_LAYER( | ||
engine_, Reduce, *(slice_layer->getOutput(0)), | ||
nvinfer1::ReduceOperation::kPROD, reduce_dim, true); | ||
|
||
nvinfer1::ITensor* input_shape = nullptr; | ||
if (start_axis == 0 && stop_axis == dims - 1) { | ||
input_shape = reduce_prod_layer->getOutput(0); | ||
} else { | ||
std::vector<nvinfer1::ITensor*> itensors; | ||
if (start_axis > 0) { | ||
nvinfer1::Dims left_start_dim, left_size_dim, left_stride_dim; | ||
left_start_dim.nbDims = 1; | ||
left_size_dim.nbDims = 1; | ||
left_stride_dim.nbDims = 1; | ||
left_start_dim.d[0] = 0; | ||
left_size_dim.d[0] = start_axis; | ||
left_stride_dim.d[0] = 1; | ||
auto* slice_layer_left = TRT_ENGINE_ADD_LAYER( | ||
engine_, Slice, *shape_layer_itensor, left_start_dim, | ||
left_size_dim, left_stride_dim); | ||
itensors.push_back(slice_layer_left->getOutput(0)); | ||
} | ||
itensors.push_back(reduce_prod_layer->getOutput(0)); | ||
if (stop_axis < dims - 1) { | ||
nvinfer1::Dims right_start_dim, right_size_dim, right_stride_dim; | ||
right_start_dim.nbDims = 1; | ||
right_size_dim.nbDims = 1; | ||
right_stride_dim.nbDims = 1; | ||
right_start_dim.d[0] = stop_axis + 1; | ||
right_size_dim.d[0] = dims - stop_axis - 1; | ||
right_stride_dim.d[0] = 1; | ||
auto* slice_layer_right = TRT_ENGINE_ADD_LAYER( | ||
engine_, Slice, *shape_layer_itensor, right_start_dim, | ||
right_size_dim, right_stride_dim); | ||
itensors.push_back(slice_layer_right->getOutput(0)); | ||
} | ||
auto* concat_layer = TRT_ENGINE_ADD_LAYER( | ||
engine_, Concatenation, itensors.data(), itensors.size()); | ||
concat_layer->setAxis(0); | ||
input_shape = concat_layer->getOutput(0); | ||
} | ||
layer = TRT_ENGINE_ADD_LAYER(engine_, Shuffle, *input); | ||
layer->setInput(1, *input_shape); | ||
} | ||
auto output_name = op_desc.Output("Out")[0]; | ||
RreplenishLayerAndOutput(layer, "flatten_contiguous_range", {output_name}, | ||
test_mode); | ||
} | ||
}; | ||
|
||
} // namespace tensorrt | ||
} // namespace inference | ||
} // namespace paddle | ||
|
||
REGISTER_TRT_OP_CONVERTER(flatten_contiguous_range, | ||
FlattenContiguousRangeOpConverter); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
115 changes: 115 additions & 0 deletions
115
...on/paddle/fluid/tests/unittests/ir/inference/test_trt_convert_flatten_contiguous_range.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from trt_layer_auto_scan_test import TrtLayerAutoScanTest, SkipReasons | ||
from program_config import TensorConfig, ProgramConfig | ||
import unittest | ||
import numpy as np | ||
import paddle.inference as paddle_infer | ||
from functools import partial | ||
from typing import Optional, List, Callable, Dict, Any, Set | ||
|
||
|
||
class TrtConvertFlattenContiguousRangeTest(TrtLayerAutoScanTest): | ||
def is_program_valid(self, program_config: ProgramConfig) -> bool: | ||
return True | ||
|
||
def sample_program_configs(self): | ||
def generate_input(batch): | ||
return np.random.random([2, batch, 4, 8, 3]).astype(np.float32) | ||
|
||
for batch in [1, 2, 4]: | ||
for start_axis in range(5): | ||
for stop_axis in range(start_axis, 5): | ||
type = "flatten_contiguous_range" | ||
op_outputs = { | ||
"Out": ["output_data"], | ||
"XShape": ["xshape_data"] | ||
} | ||
ops_config = [{ | ||
"op_type": type, | ||
"op_inputs": { | ||
"X": ["input_data"] | ||
}, | ||
"op_outputs": op_outputs, | ||
"op_attrs": { | ||
"start_axis": start_axis, | ||
"stop_axis": stop_axis, | ||
} | ||
}] | ||
ops = self.generate_op_config(ops_config) | ||
|
||
program_config = ProgramConfig( | ||
ops=ops, | ||
weights={}, | ||
inputs={ | ||
"input_data": TensorConfig( | ||
data_gen=partial(generate_input, batch)) | ||
}, | ||
outputs=["output_data"]) | ||
yield program_config | ||
|
||
def sample_predictor_configs( | ||
self, program_config) -> (paddle_infer.Config, List[int], float): | ||
def generate_dynamic_shape(attrs): | ||
self.dynamic_shape.min_input_shape = {"input_data": [2, 1, 4, 8, 3]} | ||
self.dynamic_shape.max_input_shape = {"input_data": [2, 4, 4, 8, 3]} | ||
self.dynamic_shape.opt_input_shape = {"input_data": [2, 2, 4, 8, 3]} | ||
|
||
def clear_dynamic_shape(): | ||
self.dynamic_shape.max_input_shape = {} | ||
self.dynamic_shape.min_input_shape = {} | ||
self.dynamic_shape.opt_input_shape = {} | ||
|
||
def generate_trt_nodes_num(attrs, dynamic_shape): | ||
ver = paddle_infer.get_trt_compile_version() | ||
if ver[0] * 1000 + ver[1] * 100 + ver[0] * 10 >= 7000: | ||
if dynamic_shape: | ||
return 1, 2 | ||
else: | ||
if attrs[0]['start_axis'] == 0: | ||
return 0, 3 | ||
else: | ||
return 1, 2 | ||
else: | ||
return 0, 3 | ||
|
||
attrs = [ | ||
program_config.ops[i].attrs | ||
for i in range(len(program_config.ops)) | ||
] | ||
|
||
# for static_shape | ||
clear_dynamic_shape() | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num( | ||
attrs, False), 1e-5 | ||
|
||
# for dynamic_shape | ||
generate_dynamic_shape(attrs) | ||
self.trt_param.precision = paddle_infer.PrecisionType.Float32 | ||
yield self.create_inference_config(), generate_trt_nodes_num(attrs, | ||
True), 1e-5 | ||
self.trt_param.precision = paddle_infer.PrecisionType.Half | ||
yield self.create_inference_config(), generate_trt_nodes_num(attrs, | ||
True), 1e-5 | ||
|
||
def test(self): | ||
self.run_test() | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |