-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
7 changed files
with
432 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
115 changes: 115 additions & 0 deletions
115
paddle/fluid/operators/optimizers/lars_momentum_op_xpu.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,115 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#ifdef PADDLE_WITH_XPU | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/operators/optimizers/lars_momentum_op.h" | ||
#include "paddle/phi/backends/xpu/enforce_xpu.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename T> | ||
class LarsMomentumOpXPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
bool multi_precision = ctx.Attr<bool>("multi_precision"); | ||
auto param_out = ctx.MultiOutput<framework::LoDTensor>("ParamOut"); | ||
auto velocity_out = ctx.MultiOutput<framework::LoDTensor>("VelocityOut"); | ||
auto param = ctx.MultiInput<framework::LoDTensor>("Param"); | ||
auto velocity = ctx.MultiInput<framework::LoDTensor>("Velocity"); | ||
auto learning_rate = ctx.MultiInput<framework::LoDTensor>("LearningRate"); | ||
auto grad = ctx.MultiInput<framework::LoDTensor>("Grad"); | ||
auto weight_decay_arr = ctx.Attr<std::vector<float>>("lars_weight_decay"); | ||
auto master_param = ctx.MultiInput<framework::LoDTensor>("MasterParam"); | ||
auto master_param_out = | ||
ctx.MultiOutput<framework::LoDTensor>("MasterParamOut"); | ||
T mu = static_cast<T>(ctx.Attr<float>("mu")); | ||
T lars_coeff = ctx.Attr<float>("lars_coeff"); | ||
T epsilon = ctx.Attr<float>("epsilon"); | ||
T rescale_grad = ctx.Attr<float>("rescale_grad"); | ||
|
||
std::vector<T*> param_list; | ||
std::vector<T*> grad_list; | ||
std::vector<T*> param_out_list; | ||
std::vector<float*> velocity_list; | ||
std::vector<float*> velocity_out_list; | ||
std::vector<float*> lrs; | ||
std::vector<int> param_sizes; | ||
|
||
std::vector<float*> master_param_list; | ||
std::vector<float*> master_param_out_list; | ||
int op_num = param.size(); | ||
for (int i = 0; i < op_num; ++i) { | ||
param_list.push_back(const_cast<T*>(param[i]->data<T>())); | ||
grad_list.push_back(const_cast<T*>(grad[i]->data<T>())); | ||
param_out_list.push_back(param_out[i]->mutable_data<T>(ctx.GetPlace())); | ||
velocity_list.push_back(const_cast<float*>(velocity[i]->data<float>())); | ||
velocity_out_list.push_back( | ||
velocity_out[i]->mutable_data<float>(ctx.GetPlace())); | ||
lrs.push_back(const_cast<float*>(learning_rate[i]->data<float>())); | ||
param_sizes.push_back(param[i]->numel()); | ||
|
||
PADDLE_ENFORCE_EQ( | ||
param_list[i], | ||
param_out_list[i], | ||
platform::errors::InvalidArgument( | ||
"Input(Param) and Output(ParamOut) must be the same Tensors.")); | ||
PADDLE_ENFORCE_EQ(velocity_list[i], | ||
velocity_out_list[i], | ||
platform::errors::InvalidArgument( | ||
"Input(Velocity) and Output(VelocityOut) must be " | ||
"the same Tensors.")); | ||
if (multi_precision) { | ||
master_param_list.push_back( | ||
const_cast<float*>(master_param[i]->data<float>())); | ||
master_param_out_list.push_back( | ||
master_param_out[i]->mutable_data<float>(ctx.GetPlace())); | ||
PADDLE_ENFORCE_EQ(master_param_list[i], | ||
master_param_out_list[i], | ||
platform::errors::InvalidArgument( | ||
"Input(MasterParam) and Output(MasterParamOut) " | ||
"must be the same Tensors.")); | ||
} else { | ||
master_param_list.push_back(nullptr); | ||
master_param_out_list.push_back(nullptr); | ||
} | ||
} | ||
|
||
auto& dev_ctx = ctx.template device_context<platform::XPUDeviceContext>(); | ||
int r = lars_momentum(dev_ctx.x_context(), | ||
param_list, | ||
grad_list, | ||
velocity_list, | ||
lrs, | ||
master_param_list, | ||
param_out_list, | ||
velocity_out_list, | ||
master_param_out_list, | ||
weight_decay_arr, | ||
param_sizes, | ||
mu, | ||
lars_coeff, | ||
epsilon, | ||
rescale_grad); | ||
PADDLE_ENFORCE_XDNN_SUCCESS(r, "lars_momentum"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_XPU_KERNEL(lars_momentum, ops::LarsMomentumOpXPUKernel<float>); | ||
#endif |
84 changes: 84 additions & 0 deletions
84
paddle/fluid/operators/optimizers/pow2_decay_with_linear_warmup_op_xpu.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#ifdef PADDLE_WITH_XPU | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
#include "paddle/fluid/framework/tensor.h" | ||
#include "paddle/fluid/operators/optimizers/pow2_decay_with_linear_warmup_op.h" | ||
#include "paddle/fluid/platform/macros.h" | ||
#include "paddle/phi/backends/xpu/enforce_xpu.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename T> | ||
class Pow2DecayWithLinearWarmupXPUOpKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext &ctx) const { | ||
const auto *lr = ctx.Input<framework::Tensor>("LearningRate"); | ||
const auto *step = ctx.Input<framework::Tensor>("Step"); | ||
auto *lr_out = ctx.Output<framework::Tensor>("LearningRateOut"); | ||
auto *step_out = ctx.Output<framework::Tensor>("StepOut"); | ||
PADDLE_ENFORCE_EQ( | ||
lr, | ||
lr_out, | ||
platform::errors::InvalidArgument("Input(LearningRate) and " | ||
"Output(LearningRateOut) " | ||
"must be the same.")); | ||
PADDLE_ENFORCE_NOT_NULL(lr, | ||
platform::errors::InvalidArgument( | ||
"Input(LearingRate) should not be nullptr.")); | ||
PADDLE_ENFORCE_EQ(step, | ||
step_out, | ||
platform::errors::InvalidArgument( | ||
"Input(Step) and Output(StepOut) must be the same.")); | ||
PADDLE_ENFORCE_NOT_NULL(step, | ||
platform::errors::InvalidArgument( | ||
"Input(Step) should not be nullptr.")); | ||
PADDLE_ENFORCE_EQ( | ||
step->IsInitialized(), | ||
true, | ||
platform::errors::InvalidArgument("Input(Step) must be initialized.")); | ||
|
||
auto warmup_steps = static_cast<size_t>(ctx.Attr<int64_t>("warmup_steps")); | ||
auto total_steps = static_cast<size_t>(ctx.Attr<int64_t>("total_steps")); | ||
PADDLE_ENFORCE_LE(warmup_steps, | ||
total_steps, | ||
platform::errors::InvalidArgument( | ||
"warmup_steps must not be larger than total_steps.")); | ||
auto base_lr = ctx.Attr<float>("base_lr"); | ||
auto end_lr = ctx.Attr<float>("end_lr"); | ||
|
||
auto *lr_data = lr_out->data<T>(); | ||
auto *step_data = step_out->data<int64_t>(); | ||
auto &dev_ctx = ctx.template device_context<platform::XPUDeviceContext>(); | ||
int r = xpu::pow2_decay_with_linear_warmup(dev_ctx.x_context(), | ||
lr_data, | ||
step_data, | ||
warmup_steps, | ||
total_steps, | ||
base_lr, | ||
end_lr); | ||
PADDLE_ENFORCE_XDNN_SUCCESS(r, "pow2_decay_with_linear_warmup"); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_XPU_KERNEL(pow2_decay_with_linear_warmup, | ||
ops::Pow2DecayWithLinearWarmupXPUOpKernel<float>); | ||
#endif |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
128 changes: 128 additions & 0 deletions
128
python/paddle/fluid/tests/unittests/xpu/test_coalesce_tensor_op_xpu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import unittest | ||
import numpy as np | ||
from paddle.fluid import core | ||
import sys | ||
|
||
sys.path.append("..") | ||
from op_test import OpTest | ||
|
||
alignment = 256 | ||
import paddle | ||
from op_test_xpu import XPUOpTest | ||
from xpu.get_test_cover_info import create_test_class, get_xpu_op_support_types, XPUOpTestWrapper | ||
|
||
paddle.enable_static() | ||
|
||
|
||
class XPUTestCoalesceTensorOp(XPUOpTestWrapper): | ||
|
||
def __init__(self): | ||
self.op_name = 'coalesce_tensor' | ||
self.use_dynamic_create_class = False | ||
|
||
class TestAllocContinuousSpace(XPUOpTest): | ||
|
||
def setUp(self): | ||
self.op_type = "coalesce_tensor" | ||
self.use_xpu = True | ||
self.dtype, self.fluid_dtype = self.init_dtype() | ||
attrs = self.init_attr() | ||
self.copy_data = attrs["copy_data"] | ||
self.constant = attrs["constant"] | ||
self.set_constant = attrs["set_constant"] | ||
self.Inputs = self.init_input() | ||
self.Outputs, self.FusedOutput = self.init_output( | ||
self.Inputs, self.set_constant, self.constant) | ||
self.inputs = {'Input': self.Inputs} | ||
self.attrs = attrs | ||
self.outputs = { | ||
'Output': self.Outputs, | ||
'FusedOutput': self.FusedOutput | ||
} | ||
|
||
def init_dtype(self): | ||
return np.float32, int(core.VarDesc.VarType.FP32) | ||
|
||
def init_input(self): | ||
inputs = [] | ||
inputs.append(("x1", np.random.random([20, 3]).astype(self.dtype))) | ||
inputs.append(("x2", np.random.random([20]).astype(self.dtype))) | ||
inputs.append(("x3", np.random.random([1]).astype(self.dtype))) | ||
inputs.append(("x4", np.random.random([200, | ||
30]).astype(self.dtype))) | ||
inputs.append(("x5", np.random.random([30]).astype(self.dtype))) | ||
inputs.append(("x6", np.random.random([1]).astype(self.dtype))) | ||
return inputs | ||
|
||
def init_attr(self): | ||
return { | ||
"copy_data": True, | ||
"set_constant": False, | ||
"constant": 0.0, | ||
"dtype": self.fluid_dtype | ||
} | ||
|
||
def init_output(self, input_list, set_constant, constant): | ||
inputs = [] | ||
outputs = input_list | ||
|
||
for input in input_list: | ||
length = len(input[1].flatten()) | ||
aligned_len = (length + alignment) / alignment * alignment | ||
out = np.zeros(int(aligned_len)) | ||
out[0:length] = input[1].flatten() | ||
inputs.append(out) | ||
|
||
coalesce_tensor_var = np.concatenate([input for input in inputs]) | ||
if set_constant: | ||
coalesce_tensor_var = np.ones( | ||
(len(coalesce_tensor_var))) * constant | ||
outputs = [(out[0], | ||
np.ones(out[1].shape).astype(self.dtype) * constant) | ||
for out in outputs] | ||
return outputs, coalesce_tensor_var | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(place=core.XPUPlace(0), | ||
no_check_set=["FusedOutput"], | ||
atol=1e-5) | ||
|
||
class TestAllocContinuousSpace2(TestAllocContinuousSpace): | ||
|
||
def init_attr(self): | ||
return { | ||
"copy_data": False, | ||
"set_constant": True, | ||
"constant": 0.5, | ||
"dtype": self.fluid_dtype, | ||
"user_defined_size_of_dtype": 2 | ||
} | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(place=core.XPUPlace(0), | ||
no_check_set=["FusedOutput"], | ||
atol=1e-5) | ||
|
||
|
||
support_types = get_xpu_op_support_types('coalesce_tensor') | ||
for stype in support_types: | ||
create_test_class(globals(), XPUTestCoalesceTensorOp, stype) | ||
|
||
if __name__ == '__main__': | ||
unittest.main() |
Oops, something went wrong.