Skip to content

Commit

Permalink
Merge branch 'develop' into opt/aligned_vector
Browse files Browse the repository at this point in the history
  • Loading branch information
Xreki committed Sep 2, 2021
2 parents c202180 + bb63396 commit 0dfc8f7
Show file tree
Hide file tree
Showing 51 changed files with 6,615 additions and 676 deletions.
1 change: 1 addition & 0 deletions cmake/operators.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -183,6 +183,7 @@ function(op_library TARGET)
list(REMOVE_ITEM miopen_cu_cc_srcs "affine_grid_cudnn_op.cu.cc")
list(REMOVE_ITEM miopen_cu_cc_srcs "grid_sampler_cudnn_op.cu.cc")
list(REMOVE_ITEM hip_srcs "cholesky_op.cu")
list(REMOVE_ITEM hip_srcs "svd_op.cu")
list(REMOVE_ITEM hip_srcs "multinomial_op.cu")
list(REMOVE_ITEM hip_srcs "decode_jpeg_op.cu")
hip_library(${TARGET} SRCS ${cc_srcs} ${hip_cc_srcs} ${miopen_cu_cc_srcs} ${miopen_cu_srcs} ${mkldnn_cc_srcs} ${hip_srcs} DEPS ${op_library_DEPS}
Expand Down
23 changes: 15 additions & 8 deletions paddle/fluid/operators/amp/update_loss_scaling_op_npu.cc
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,8 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/npu_op_runner.h"

DECLARE_int32(min_loss_scaling);

namespace paddle {
namespace operators {

Expand Down Expand Up @@ -49,7 +51,7 @@ void Update(const platform::NPUDeviceContext& ctx,

std::vector<int> bad_out_data;
TensorToVector(*bad_out_tensor, ctx, &bad_out_data);
if (bad_out_data[0] == decr_every_n_nan_or_inf) {
if (bad_out_data[0] >= decr_every_n_nan_or_inf) {
const auto& runner_p3 = NpuOpRunner("Power", {*pre_loss_scaling_tensor},
{*updated_loss_scaling_tensor},
{{"power", static_cast<float>(1)},
Expand All @@ -60,13 +62,18 @@ void Update(const platform::NPUDeviceContext& ctx,

std::vector<T> new_loss_scaling;
TensorToVector(*updated_loss_scaling_tensor, ctx, &new_loss_scaling);
if (new_loss_scaling[0] < static_cast<T>(1)) {
float min_value = 1.0;
if (FLAGS_min_loss_scaling > 1) {
min_value = static_cast<float>(FLAGS_min_loss_scaling);
}

if (new_loss_scaling[0] < min_value) {
// updated_loss_scaling_data = 1
const auto& runner_p4 = NpuOpRunner("Power", {*pre_loss_scaling_tensor},
{*updated_loss_scaling_tensor},
{{"power", static_cast<float>(1)},
{"scale", static_cast<float>(0)},
{"shift", static_cast<float>(1)}});
const auto& runner_p4 = NpuOpRunner(
"Power", {*pre_loss_scaling_tensor}, {*updated_loss_scaling_tensor},
{{"power", static_cast<float>(1)},
{"scale", static_cast<float>(0)},
{"shift", static_cast<float>(min_value)}});

runner_p4.Run(stream);
}
Expand All @@ -93,7 +100,7 @@ void Update(const platform::NPUDeviceContext& ctx,
std::vector<int> good_out_data;
TensorToVector(*good_out_tensor, ctx, &good_out_data);

if (good_out_data[0] == incr_every_n_steps) {
if (good_out_data[0] >= incr_every_n_steps) {
const auto& runner_p3 = NpuOpRunner("Power", {*pre_loss_scaling_tensor},
{*updated_loss_scaling_tensor},
{{"power", static_cast<float>(1)},
Expand Down
8 changes: 8 additions & 0 deletions paddle/fluid/operators/elementwise/elementwise_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -85,6 +85,14 @@ class ElementwiseOp : public framework::OperatorWithKernel {
auto y_dims = ctx->GetInputDim("Y");
int max_dim = std::max(x_dims.size(), y_dims.size());
int axis = ctx->Attrs().Get<int>("axis");
if (x_dims.size() == y_dims.size()) {
PADDLE_ENFORCE_EQ((axis == -1) || (axis == 0), true,
platform::errors::InvalidArgument(
"axis should be -1 or 0 while the dimension of "
"tensor X (%s) is equal to the dimension of "
"tensor Y (%s), but received axis: %s",
x_dims.size(), y_dims.size(), axis));
}
PADDLE_ENFORCE_EQ((axis >= (-1 * max_dim)) && (axis < max_dim), true,
platform::errors::InvalidArgument(
"The axis range must be [%s, %s), but axis is %s. "
Expand Down
120 changes: 120 additions & 0 deletions paddle/fluid/operators/gather_nd_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/gather_nd_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class GatherNdNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *x = ctx.Input<Tensor>("X");
auto *index = ctx.Input<Tensor>("Index");
auto *out = ctx.Output<Tensor>("Out");

out->template mutable_data<T>(ctx.GetPlace());

if (x->numel() == 0) return;

if (index->numel() == 0) {
framework::TensorCopy(*x, ctx.GetPlace(), ctx.device_context(), out);
return;
}

const auto &index_type = index->type();
bool index_type_match = index_type == framework::proto::VarType::INT32 ||
index_type == framework::proto::VarType::INT64;
PADDLE_ENFORCE_EQ(index_type_match, true,
platform::errors::InvalidArgument(
"Index holds the wrong type, it holds [%s],"
"but desires to be [%s] or [%s]",
paddle::framework::DataTypeToString(index_type),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT32),
paddle::framework::DataTypeToString(
framework::proto::VarType::INT64)));

const auto &runner = NpuOpRunner("GatherNd", {*x, *index}, {*out}, {});
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};

template <typename DeviceContext, typename T>
class GatherNdGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
auto *index = ctx.Input<Tensor>("Index");
auto *x = ctx.Input<Tensor>("X");
auto *dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto *dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto *p = dx->mutable_data<T>(ctx.GetPlace());

if (dx->numel() == 0) return;

if (index->numel() == 0) {
framework::TensorCopy(*dout, ctx.GetPlace(), ctx.device_context(), dx);
return;
}

framework::Tensor tmp_tensor(index->type());
framework::Tensor tmp_tensor2(dout->type());
const auto index_dims = index->dims();
if (index_dims.size() == 1) {
tmp_tensor.ShareDataWith(*index);
std::vector<int64_t> new_dim = {1, index_dims[0]};
tmp_tensor.Resize(framework::make_ddim(new_dim));
index = &tmp_tensor;

tmp_tensor2.ShareDataWith(*dout);
std::vector<int64_t> new_dim2{1};
for (int i = index->numel(); i < x->dims().size(); i++) {
new_dim2.push_back(x->dims()[i]);
}
tmp_tensor2.Resize(framework::make_ddim(new_dim2));
dout = &tmp_tensor2;
}

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

platform::NPUMemsetAsync(static_cast<void *>(p), 0, dx->numel() * sizeof(T),
stream);

const auto &runner_scatter = NpuOpRunner(
"ScatterNdAdd", {*dx, *index, *dout}, {*dx}, {{"use_locking", false}});
runner_scatter.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_NPU_KERNEL(
gather_nd, ops::GatherNdNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>,
ops::GatherNdNPUKernel<paddle::platform::NPUDeviceContext, float>);

REGISTER_OP_NPU_KERNEL(
gather_nd_grad,
ops::GatherNdGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>,
ops::GatherNdGradNPUKernel<paddle::platform::NPUDeviceContext, float>);
3 changes: 2 additions & 1 deletion paddle/fluid/operators/grid_sampler_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,8 @@ class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
AddAttr<bool>(
"use_cudnn",
"(bool, default true) Only used in cudnn kernel, need install cudnn")
.SetDefault(true);
.SetDefault(true)
.AsExtra();

AddAttr<bool>(
"align_corners",
Expand Down
108 changes: 108 additions & 0 deletions paddle/fluid/operators/label_smooth_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/operators/label_smooth_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

template <typename T>
void LabelSmoothMuls(const platform::Place& place, const aclrtStream& stream,
const Tensor* in, float val, Tensor* out) {
out->mutable_data<T>(in->dims(), place);
const auto& runner = NpuOpRunner("Muls", {*in}, {*out}, {{"value", val}});
runner.Run(stream);
}

template <typename T>
void LabelSmoothAdds(const platform::Place& place, const aclrtStream& stream,
const Tensor* in, float val, Tensor* out) {
out->mutable_data<T>(in->dims(), place);
const auto& runner = NpuOpRunner("Adds", {*in}, {*out}, {{"value", val}});
runner.Run(stream);
}

template <typename T>
void LabelSmoothAddBroadCast(const platform::Place& place,
const aclrtStream& stream, const Tensor* in1,
const Tensor* in2, Tensor* out) {
out->mutable_data<T>(place);
const auto& runner = NpuOpRunner("AddV2", {*in1, *in2}, {*out}, {});
runner.Run(stream);
}

template <typename T>
class LabelSmoothNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* out_t = ctx.Output<LoDTensor>("Out");
auto* in_t = ctx.Input<LoDTensor>("X");
auto* dist_t = ctx.Input<Tensor>("PriorDist");
auto epsilon = ctx.Attr<float>("epsilon");

auto label_dim = in_t->dims()[in_t->dims().size() - 1];
auto place = ctx.GetPlace();

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

if (dist_t) {
Tensor tmp;
Tensor dist;
Tensor tmp2;
LabelSmoothMuls<T>(place, stream, in_t, (1 - epsilon), &tmp);
LabelSmoothMuls<T>(place, stream, dist_t, epsilon, &tmp2);
tmp2.Resize({1, label_dim});
LabelSmoothAddBroadCast<T>(place, stream, &tmp, &tmp2, out_t);
} else {
Tensor tmp;
LabelSmoothMuls<T>(place, stream, in_t, (1 - epsilon), &tmp);
LabelSmoothAdds<T>(place, stream, &tmp, (epsilon / label_dim), out_t);
}
}
};

template <typename T>
class LabelSmoothGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_out_t = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_in_t = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto epsilon = ctx.Attr<float>("epsilon");

auto place = ctx.GetPlace();

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

LabelSmoothMuls<T>(place, stream, d_out_t, 1 - epsilon, d_in_t);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_NPU_KERNEL(label_smooth, ops::LabelSmoothNPUKernel<float>,
ops::LabelSmoothNPUKernel<plat::float16>);
REGISTER_OP_NPU_KERNEL(label_smooth_grad, ops::LabelSmoothGradNPUKernel<float>,
ops::LabelSmoothGradNPUKernel<plat::float16>);
Loading

1 comment on commit 0dfc8f7

@paddle-bot-old
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Congratulation! Your pull request passed all required CI. You could ask reviewer(s) to approve and merge. 🎉

Please sign in to comment.