-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Inference]Support TensorRT execute in PIR (#64995)
* adapt tensorrt * fix compile bugs * delete thirdparty * add unittest * fix py3 compile * fix kunlun200 * fix windows inference * fix windows bug * polish code * polish code * polish code * support build trt_op in python * rename construction params * fix bug * fix compile bugs * support collect shape * support re-collect shape * rename tensorrt op * polish code * add debug attr * delete member in tensorrt engine instruction * remove mutable_data * fix compile
- Loading branch information
1 parent
5bd7f4a
commit 101bf6e
Showing
28 changed files
with
4,212 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
234 changes: 234 additions & 0 deletions
234
paddle/fluid/framework/new_executor/collect_shape_manager.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,234 @@ | ||
/* Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); you may not use | ||
this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/framework/new_executor/collect_shape_manager.h" | ||
#include "paddle/fluid/platform/device_context.h" | ||
#include "paddle/phi/kernels/funcs/data_type_transform.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
CollectShapeManager &CollectShapeManager::Instance() { | ||
static CollectShapeManager instance; | ||
return instance; | ||
} | ||
|
||
void CollectShapeManager::CollectShapeInfo( | ||
framework::InstructionBase *instr, | ||
framework::ValueExecutionInfo *value_exe_info, | ||
framework::Scope *scope) { | ||
is_shape_range_info_ready_ = false; | ||
for (auto &input : instr->Inputs()) { | ||
auto var_name = value_exe_info->GetVarName(input.first); | ||
auto *var = scope->FindVar(var_name); | ||
if (!var || !var->IsType<phi::DenseTensor>()) continue; | ||
auto tensor = var->Get<phi::DenseTensor>(); | ||
if (!tensor.initialized()) continue; | ||
paddle::platform::DeviceContextPool &pool = | ||
paddle::platform::DeviceContextPool::Instance(); | ||
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) | ||
auto *dev_ctx = pool.Get(phi::GPUPlace()); | ||
auto stream = static_cast<phi::GPUContext *>(dev_ctx)->stream(); | ||
#ifdef PADDLE_WITH_HIP | ||
hipStreamSynchronize(stream); | ||
#else | ||
cudaStreamSynchronize(stream); | ||
#endif | ||
#endif | ||
|
||
framework::DDim dim = tensor.dims(); | ||
std::vector<int32_t> shape(dim.size()); | ||
for (int i = 0; i < static_cast<int>(shape.size()); ++i) | ||
shape[i] = static_cast<int32_t>(dim[i]); | ||
if (!shape.empty()) { | ||
shape_info_[input.first].emplace_back(shape); | ||
} else if (tensor.numel() > 0) { | ||
// This must be a zero dimension tensor. | ||
PADDLE_ENFORCE_EQ(tensor.numel(), | ||
1UL, | ||
platform::errors::PreconditionNotMet( | ||
"This tensor must have one element, but got %ld.", | ||
tensor.numel())); | ||
std::vector<int32_t> zero_shape(1, 1); | ||
shape_info_[input.first].emplace_back(zero_shape); | ||
} | ||
|
||
// We need collect value range for shape tensor for Paddle-TRT's use. | ||
// To be noticed, this method to identify all shape tensors is based on | ||
// assumption that all shape tensors in the model have numbers <= 8. | ||
// This is a simple method to identify all shape tensors with some | ||
// mistakes, but it doesn't matter. | ||
auto is_shape_tensor = tensor.numel() <= 8 && tensor.numel() >= 1; | ||
if ((tensor.dtype() == phi::DataType::INT32 || | ||
tensor.dtype() == phi::DataType::INT64) && | ||
is_shape_tensor) { | ||
std::vector<int> int32_host(tensor.numel()); | ||
|
||
if (platform::is_cpu_place(tensor.place())) { | ||
auto &int32_tensor = tensor; | ||
if (tensor.dtype() == phi::DataType::INT64) { | ||
auto *cpu_ctx = pool.Get(platform::CPUPlace()); | ||
int32_tensor = phi::funcs::TransDataType( | ||
reinterpret_cast<const phi::CPUContext &>(*cpu_ctx), | ||
tensor, | ||
DataType::INT32); | ||
} | ||
paddle::memory::Copy(platform::CPUPlace(), | ||
int32_host.data(), | ||
platform::CPUPlace(), | ||
int32_tensor.data<int>(), | ||
int32_tensor.numel() * sizeof(int)); | ||
} else if (platform::is_gpu_place(tensor.place())) { | ||
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) | ||
auto *dev_ctx = pool.Get(tensor.place()); | ||
auto &int32_tensor = tensor; | ||
if (tensor.dtype() == phi::DataType::INT64) { | ||
int32_tensor = phi::funcs::TransDataType( | ||
reinterpret_cast<const phi::GPUContext &>(*dev_ctx), | ||
tensor, | ||
DataType::INT32); | ||
} | ||
paddle::memory::Copy(platform::CPUPlace(), | ||
int32_host.data(), | ||
int32_tensor.place(), | ||
int32_tensor.data<int>(), | ||
int32_tensor.numel() * sizeof(int), | ||
nullptr); | ||
#endif | ||
} | ||
shape_tensor_info_[input.first].emplace_back(int32_host); | ||
} | ||
} | ||
} | ||
|
||
void CollectShapeManager::StatisticShapeRangeInfo() { | ||
if (is_shape_range_info_ready_) { | ||
return; | ||
} | ||
auto extract_min_max_opt = | ||
[](std::map<pir::Value, std::vector<int32_t>> &min_data, | ||
decltype(min_data) max_data, | ||
decltype(min_data) opt_data, | ||
decltype(shape_info_) shape_data) { | ||
for (auto const &it : shape_data) { | ||
auto val = it.first; | ||
auto shapes = it.second; | ||
std::vector<int32_t> min_shape(shapes[0].begin(), shapes[0].end()); | ||
std::vector<int32_t> max_shape(shapes[0].begin(), shapes[0].end()); | ||
std::vector<int32_t> opt_shape(shapes[0].begin(), shapes[0].end()); | ||
|
||
auto ShapeMaxFreq = | ||
[](const std::map<int32_t, int32_t> &m) -> int32_t { | ||
std::vector<std::pair<int32_t, int32_t>> counter; | ||
for (auto &it : m) counter.emplace_back(it); | ||
std::sort(counter.begin(), | ||
counter.end(), | ||
[](std::pair<int32_t, int32_t> &a, | ||
std::pair<int32_t, int32_t> &b) { | ||
return a.second > b.second; | ||
}); | ||
return counter[0].first; | ||
}; | ||
|
||
for (size_t d = 0; d < shapes[0].size(); ++d) { | ||
std::map<int32_t, int32_t> counter; | ||
for (auto &shape : shapes) { | ||
counter[shape[d]] += 1; | ||
if (shape[d] < min_shape[d]) min_shape[d] = shape[d]; | ||
if (shape[d] > max_shape[d]) max_shape[d] = shape[d]; | ||
} | ||
opt_shape[d] = ShapeMaxFreq(counter); | ||
} | ||
|
||
min_data[val] = min_shape; | ||
max_data[val] = max_shape; | ||
opt_data[val] = opt_shape; | ||
} | ||
}; | ||
extract_min_max_opt(min_shapes_, max_shapes_, opt_shapes_, shape_info_); | ||
extract_min_max_opt( | ||
min_values_, max_values_, opt_values_, shape_tensor_info_); | ||
is_shape_range_info_ready_ = true; | ||
} | ||
|
||
std::vector<int32_t> CollectShapeManager::GetValueShapeRangeInfo( | ||
pir::Value op_val, bool is_shape_tensor, ShapeMode shape_mode) { | ||
PADDLE_ENFORCE_EQ(is_shape_range_info_ready_, | ||
true, | ||
::common::errors::PreconditionNotMet( | ||
"Shape range info has not been calculated and " | ||
"StatisticShapeRangeInfo must be called first.")); | ||
PADDLE_ENFORCE_NE(op_value2kernel_value_.find(op_val), | ||
op_value2kernel_value_.end(), | ||
::common::errors::NotFound( | ||
"Can't find kernel_value that corresponding to " | ||
"op_value, maybe origin program has changed or not " | ||
"open FLAGS_enable_collect_shape.")); | ||
auto kernel_val = op_value2kernel_value_[op_val]; | ||
if (shape_mode == ShapeMode::kMIN) { | ||
if (is_shape_tensor) { | ||
PADDLE_ENFORCE_NE( | ||
min_values_.find(kernel_val), | ||
min_values_.end(), | ||
::common::errors::NotFound("Can't find min shape according to the " | ||
"input Value that is a shape tensor.")); | ||
return min_values_[kernel_val]; | ||
} else { | ||
PADDLE_ENFORCE_NE( | ||
min_shapes_.find(kernel_val), | ||
min_shapes_.end(), | ||
::common::errors::NotFound("Can't find min shape according to the " | ||
"input Value that isn't a shape tensor")); | ||
return min_shapes_[kernel_val]; | ||
} | ||
} else if (shape_mode == ShapeMode::kMAX) { | ||
if (is_shape_tensor) { | ||
PADDLE_ENFORCE_NE( | ||
max_values_.find(kernel_val), | ||
max_values_.end(), | ||
::common::errors::NotFound("Can't find max shape according to the " | ||
"input Value that is a shape tensor.")); | ||
return max_values_[kernel_val]; | ||
} else { | ||
PADDLE_ENFORCE_NE( | ||
max_shapes_.find(kernel_val), | ||
max_shapes_.end(), | ||
::common::errors::NotFound("Can't find max shape according to the " | ||
"input Value that isn't a shape tensor")); | ||
return max_shapes_[kernel_val]; | ||
} | ||
} else if (shape_mode == ShapeMode::kOPT) { | ||
if (is_shape_tensor) { | ||
PADDLE_ENFORCE_NE( | ||
opt_values_.find(kernel_val), | ||
opt_values_.end(), | ||
::common::errors::NotFound("Can't find opt shape according to the " | ||
"input Value that is a shape tensor.")); | ||
return opt_values_[kernel_val]; | ||
} else { | ||
PADDLE_ENFORCE_NE( | ||
opt_shapes_.find(kernel_val), | ||
opt_shapes_.end(), | ||
::common::errors::NotFound("Can't find opt shape according to the " | ||
"input Value that isn't a shape tensor")); | ||
return opt_shapes_[kernel_val]; | ||
} | ||
} else { | ||
PADDLE_THROW(phi::errors::Unimplemented( | ||
"We only support ShapeMode::kMIN, ShapeMode::kMax and ShapeMode::kOpt " | ||
"when GetValueShapeRangeInfo")); | ||
} | ||
} | ||
|
||
} // namespace framework | ||
} // namespace paddle |
73 changes: 73 additions & 0 deletions
73
paddle/fluid/framework/new_executor/collect_shape_manager.h
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
/* Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include <string> | ||
#include <unordered_map> | ||
#include <vector> | ||
|
||
#include "paddle/fluid/framework/new_executor/instruction/instruction_base.h" | ||
#include "paddle/fluid/framework/new_executor/pir_adaptor/pir_adaptor_util.h" | ||
#include "paddle/pir/include/core/value.h" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
|
||
enum class ShapeMode { | ||
kMIN, | ||
kOPT, | ||
kMAX, | ||
}; | ||
|
||
// CollectShapeManager can get all shape of value when run executor and this | ||
// information will be used for TensorRTEngine | ||
class CollectShapeManager { | ||
public: | ||
static CollectShapeManager& Instance(); | ||
|
||
CollectShapeManager(const CollectShapeManager&) = delete; | ||
CollectShapeManager(CollectShapeManager&&) = delete; | ||
CollectShapeManager& operator=(const CollectShapeManager&) = delete; | ||
|
||
void SetValueMap( | ||
const std::unordered_map<pir::Value, pir::Value>& op_value2kernel_value) { | ||
op_value2kernel_value_ = op_value2kernel_value; | ||
} | ||
|
||
void CollectShapeInfo(framework::InstructionBase* instr, | ||
framework::ValueExecutionInfo* value_exe_info, | ||
framework::Scope* scope); | ||
void StatisticShapeRangeInfo(); | ||
|
||
std::vector<int32_t> GetValueShapeRangeInfo(pir::Value val, | ||
bool is_shape_tensor, | ||
ShapeMode shape_mode); | ||
|
||
private: | ||
CollectShapeManager() {} | ||
std::unordered_map<pir::Value, pir::Value> op_value2kernel_value_; | ||
std::map<pir::Value, std::vector<std::vector<int32_t>>> shape_info_; | ||
std::map<pir::Value, std::vector<std::vector<int32_t>>> shape_tensor_info_; | ||
std::map<pir::Value, std::vector<int32_t>> min_shapes_; | ||
std::map<pir::Value, std::vector<int32_t>> max_shapes_; | ||
std::map<pir::Value, std::vector<int32_t>> opt_shapes_; | ||
std::map<pir::Value, std::vector<int32_t>> min_values_; | ||
std::map<pir::Value, std::vector<int32_t>> max_values_; | ||
std::map<pir::Value, std::vector<int32_t>> opt_values_; | ||
bool is_shape_range_info_ready_ = false; | ||
}; | ||
|
||
} // namespace framework | ||
} // namespace paddle |
Oops, something went wrong.