-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
289 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import copy | ||
import collections | ||
import itertools | ||
import six | ||
import math | ||
import sys | ||
import warnings | ||
from functools import partial, reduce | ||
|
||
import numpy as np | ||
import paddle | ||
import paddle.fluid as fluid | ||
from paddle import framework | ||
from paddle.device import get_device, get_cudnn_version | ||
from paddle.nn import initializer as I | ||
from paddle.nn import Layer, LayerList | ||
from paddle.fluid.layers import utils | ||
from paddle.fluid.layer_helper import LayerHelper | ||
from paddle.fluid.layers.utils import map_structure, flatten, pack_sequence_as | ||
from paddle.fluid.data_feeder import convert_dtype | ||
from paddle.fluid.param_attr import ParamAttr | ||
from paddle import _C_ops | ||
__all__ = ['resnet_unit', 'ResNetUnit'] | ||
|
||
|
||
def resnet_unit(x, filter_x, scale_x, bias_x, mean_x, var_x, z, filter_z, | ||
scale_z, bias_z, mean_z, var_z, stride, stride_z, padding, | ||
dilation, groups, momentum, eps, data_format, fuse_add, | ||
has_shortcut, use_global_stats, is_test, act): | ||
|
||
helper = LayerHelper('resnet_unit', **locals()) | ||
bn_param_dtype = fluid.core.VarDesc.VarType.FP32 | ||
bit_mask_dtype = fluid.core.VarDesc.VarType.INT32 | ||
out = helper.create_variable_for_type_inference(x.dtype) | ||
bit_mask = helper.create_variable_for_type_inference( | ||
dtype=bit_mask_dtype, stop_gradient=True) | ||
# intermediate_out for x | ||
conv_x = helper.create_variable_for_type_inference( | ||
dtype=x.dtype, stop_gradient=True) | ||
saved_mean_x = helper.create_variable_for_type_inference( | ||
dtype=bn_param_dtype, stop_gradient=True) | ||
saved_invstd_x = helper.create_variable_for_type_inference( | ||
dtype=bn_param_dtype, stop_gradient=True) | ||
running_mean_x = mean_x | ||
running_var_x = var_x | ||
# intermediate_out for z | ||
conv_z = helper.create_variable_for_type_inference( | ||
dtype=x.dtype, stop_gradient=True) | ||
saved_mean_z = helper.create_variable_for_type_inference( | ||
dtype=bn_param_dtype, stop_gradient=True) | ||
saved_invstd_z = helper.create_variable_for_type_inference( | ||
dtype=bn_param_dtype, stop_gradient=True) | ||
running_mean_z = helper.create_variable_for_type_inference( | ||
dtype=bn_param_dtype, stop_gradient=True) if mean_z is None else mean_z | ||
running_var_z = helper.create_variable_for_type_inference( | ||
dtype=bn_param_dtype, stop_gradient=True) if var_z is None else var_z | ||
|
||
inputs = { | ||
'X': x, | ||
'FilterX': filter_x, | ||
'ScaleX': scale_x, | ||
'BiasX': bias_x, | ||
'MeanX': mean_x, | ||
'VarX': var_x, | ||
'Z': z, | ||
'FilterZ': filter_z, | ||
'ScaleZ': scale_z, | ||
'BiasZ': bias_z, | ||
'MeanZ': mean_z, | ||
'VarZ': var_z | ||
} | ||
|
||
attrs = { | ||
'stride': stride, | ||
'stride_z': stride_z, | ||
'padding': padding, | ||
'dilation': dilation, | ||
'group': groups, | ||
'momentum': momentum, | ||
'epsilon': eps, | ||
'data_format': data_format, | ||
'fuse_add': fuse_add, | ||
'has_shortcut': has_shortcut, | ||
'use_global_stats': use_global_stats, | ||
'is_test': is_test, | ||
'act_type': act | ||
} | ||
|
||
outputs = { | ||
'Y': out, | ||
'BitMask': bit_mask, | ||
'ConvX': conv_x, | ||
'SavedMeanX': saved_mean_x, | ||
'SavedInvstdX': saved_invstd_x, | ||
'RunningMeanX': running_mean_x, | ||
'RunningVarX': running_var_x, | ||
'ConvZ': conv_z, | ||
'SavedMeanZ': saved_mean_z, | ||
'SavedInvstdZ': saved_invstd_z, | ||
'RunningMeanZ': running_mean_z, | ||
'RunningVarZ': running_var_z, | ||
} | ||
|
||
helper.append_op( | ||
type='resnet_unit', inputs=inputs, outputs=outputs, attrs=attrs) | ||
|
||
return out | ||
|
||
|
||
class ResNetUnit(Layer): | ||
r""" | ||
******Temporary version******. | ||
ResNetUnit is designed for optimize the performence by using cudnnv8 API. | ||
""" | ||
|
||
def __init__(self, | ||
num_channels_x, | ||
num_filters, | ||
filter_size, | ||
stride=1, | ||
momentum=0.9, | ||
eps=1e-5, | ||
data_format='NHWC', | ||
act='relu', | ||
fuse_add=False, | ||
has_shortcut=False, | ||
use_global_stats=False, | ||
is_test=False, | ||
filter_x_attr=None, | ||
scale_x_attr=None, | ||
bias_x_attr=None, | ||
moving_mean_x_name=None, | ||
moving_var_x_name=None, | ||
num_channels_z=1, | ||
stride_z=1, | ||
filter_z_attr=None, | ||
scale_z_attr=None, | ||
bias_z_attr=None, | ||
moving_mean_z_name=None, | ||
moving_var_z_name=None): | ||
super(ResNetUnit, self).__init__() | ||
self._stride = stride | ||
self._stride_z = stride_z | ||
self._dilation = 1 | ||
self._kernel_size = utils.convert_to_list(filter_size, 2, 'kernel_size') | ||
self._padding = (filter_size - 1) // 2 | ||
self._groups = 1 | ||
self._momentum = momentum | ||
self._eps = eps | ||
self._data_format = data_format | ||
self._act = act | ||
self._fuse_add = fuse_add | ||
self._has_shortcut = has_shortcut | ||
self._use_global_stats = use_global_stats | ||
self._is_test = is_test | ||
|
||
# check format | ||
valid_format = {'NHWC'} | ||
if data_format not in valid_format: | ||
raise ValueError( | ||
"conv_format must be one of {}, but got conv_format='{}'". | ||
format(valid_format, data_format)) | ||
|
||
def _get_default_param_initializer(channels): | ||
filter_elem_num = np.prod(self._kernel_size) * channels | ||
std = (2.0 / filter_elem_num)**0.5 | ||
return I.Normal(0.0, std) | ||
|
||
# initial filter | ||
bn_param_dtype = fluid.core.VarDesc.VarType.FP32 | ||
bn_param_shape = [1, 1, 1, num_filters] | ||
filter_x_shape = [num_filters, filter_size, filter_size, num_channels_x] | ||
filter_z_shape = [num_filters, filter_size, filter_size, num_channels_z] | ||
|
||
self.filter_x = self.create_parameter( | ||
shape=filter_x_shape, | ||
attr=filter_x_attr, | ||
default_initializer=_get_default_param_initializer(num_channels_x)) | ||
self.scale_x = self.create_parameter( | ||
shape=bn_param_shape, | ||
attr=scale_x_attr, | ||
dtype=bn_param_dtype, | ||
default_initializer=I.Constant(1.0)) | ||
self.bias_x = self.create_parameter( | ||
shape=bn_param_shape, | ||
attr=bias_x_attr, | ||
dtype=bn_param_dtype, | ||
is_bias=True) | ||
self.mean_x = self.create_parameter( | ||
attr=ParamAttr( | ||
name=moving_mean_x_name, | ||
initializer=I.Constant(0.0), | ||
trainable=False), | ||
shape=bn_param_shape, | ||
dtype=bn_param_dtype) | ||
self.mean_x.stop_gradient = True | ||
self.var_x = self.create_parameter( | ||
attr=ParamAttr( | ||
name=moving_var_x_name, | ||
initializer=I.Constant(1.0), | ||
trainable=False), | ||
shape=bn_param_shape, | ||
dtype=bn_param_dtype) | ||
self.var_x.stop_gradient = True | ||
if has_shortcut: | ||
self.filter_z = self.create_parameter( | ||
shape=filter_z_shape, | ||
attr=filter_z_attr, | ||
default_initializer=_get_default_param_initializer( | ||
num_channels_z)) | ||
self.scale_z = self.create_parameter( | ||
shape=bn_param_shape, | ||
attr=scale_z_attr, | ||
dtype=bn_param_dtype, | ||
default_initializer=I.Constant(1.0)) | ||
self.bias_z = self.create_parameter( | ||
shape=bn_param_shape, | ||
attr=bias_z_attr, | ||
dtype=bn_param_dtype, | ||
is_bias=True) | ||
self.mean_z = self.create_parameter( | ||
attr=ParamAttr( | ||
name=moving_mean_z_name, | ||
initializer=I.Constant(0.0), | ||
trainable=False), | ||
shape=bn_param_shape, | ||
dtype=bn_param_dtype) | ||
self.mean_z.stop_gradient = True | ||
self.var_z = self.create_parameter( | ||
attr=ParamAttr( | ||
name=moving_var_z_name, | ||
initializer=I.Constant(1.0), | ||
trainable=False), | ||
shape=bn_param_shape, | ||
dtype=bn_param_dtype) | ||
self.var_z.stop_gradient = True | ||
else: | ||
self.filter_z = None | ||
self.scale_z = None | ||
self.bias_z = None | ||
self.mean_z = None | ||
self.var_z = None | ||
|
||
def forward(self, x, z=None): | ||
if self._fuse_add and z is None: | ||
raise ValueError("z can not be None") | ||
|
||
out = resnet_unit( | ||
x, self.filter_x, self.scale_x, self.bias_x, self.mean_x, | ||
self.var_x, z, self.filter_z, self.scale_z, self.bias_z, | ||
self.mean_z, self.var_z, self._stride, self._stride_z, | ||
self._padding, self._dilation, self._groups, self._momentum, | ||
self._eps, self._data_format, self._fuse_add, self._has_shortcut, | ||
self._use_global_stats, self._is_test, self._act) | ||
return out |