Skip to content

Commit

Permalink
add xpu sgd & momentum (#27728)
Browse files Browse the repository at this point in the history
* add xpu sgd & momentum
  • Loading branch information
MrChengmo authored Oct 13, 2020
1 parent 8028321 commit 1607e87
Show file tree
Hide file tree
Showing 4 changed files with 284 additions and 0 deletions.
62 changes: 62 additions & 0 deletions paddle/fluid/operators/optimizers/momentum_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include <string>
#include "paddle/fluid/operators/optimizers/sgd_op.h"
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MomentumOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
T mu = static_cast<T>(ctx.Attr<float>("mu"));
bool use_nesterov = ctx.Attr<bool>("use_nesterov");

auto learning_rate = ctx.Input<framework::Tensor>("LearningRate");
auto param = ctx.Input<framework::Tensor>("Param");
auto param_out = ctx.Output<framework::Tensor>("ParamOut");
auto* velocity = ctx.Input<framework::Tensor>("Velocity");
auto velocity_out = ctx.Output<framework::Tensor>("VelocityOut");
param_out->mutable_data<T>(ctx.GetPlace());
velocity_out->mutable_data<T>(ctx.GetPlace());
auto* lr = learning_rate->data<T>();

auto* grad_var = ctx.InputVar("Grad");
PADDLE_ENFORCE_EQ(grad_var->IsType<framework::LoDTensor>(), true,
platform::errors::PermissionDenied(
"Unsupported Variable Type of Param & Grad in "
"MomentumOp-XPU. Excepted "
"LodTensor, But received [%s] and [%s]",
paddle::framework::ToTypeName(grad_var->Type())));

auto grad = ctx.Input<framework::Tensor>("Grad");

auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::momentum(
dev_ctx.x_context(), param->data<float>(), velocity->data<float>(),
grad->data<float>(), lr, use_nesterov, mu, param_out->numel(),
param_out->data<float>(), velocity_out->data<float>());
PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS,
platform::errors::PermissionDenied("XPU kernel error!"));
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
momentum,
ops::MomentumOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
79 changes: 79 additions & 0 deletions paddle/fluid/operators/optimizers/sgd_op_xpu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,79 @@
/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#ifdef PADDLE_WITH_XPU
#include "paddle/fluid/operators/optimizers/sgd_op.h"
#include <string>
namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class SGDOpXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
const auto *learning_rate = ctx.Input<framework::Tensor>("LearningRate");

const auto *param_var = ctx.InputVar("Param");
const auto *grad_var = ctx.InputVar("Grad");

if (param_var->IsType<framework::LoDTensor>() &&
grad_var->IsType<framework::LoDTensor>()) {
const auto *param = ctx.Input<framework::Tensor>("Param");
auto *param_out = ctx.Output<framework::Tensor>("ParamOut");
// Actually, all tensors are LoDTensor except SelectedRows.
const auto *grad = ctx.Input<framework::Tensor>("Grad");
auto sz = param_out->numel();
PADDLE_ENFORCE_EQ(param->numel(), sz,
platform::errors::InvalidArgument(
"The input tensor Param's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Param's "
"numel = [%s], ParamOut's numel = [%s]",
param->numel(), sz));
PADDLE_ENFORCE_EQ(grad->numel(), sz,
platform::errors::InvalidArgument(
"The input tensor Grad's numel of SgdOp "
"should be equal with ParamOut's numel. "
"But received Grad's "
"numel = [%s], ParamOut's numel = [%s]",
grad->numel(), sz));

const T *lr = learning_rate->data<T>();
const T *param_data = param->data<T>();
const T *grad_data = grad->data<T>();
T *out_data = param_out->mutable_data<T>(ctx.GetPlace());

auto &dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::sgd(dev_ctx.x_context(), sz, grad_data, param_data, lr,
out_data);
PADDLE_ENFORCE_EQ(
r, xpu::Error_t::SUCCESS,
platform::errors::PermissionDenied("XPU kernel error!"));
} else {
PADDLE_ENFORCE_EQ(false, true,
platform::errors::PermissionDenied(
"Unsupported Variable Type of Param & Grad in "
"SgdOp-XPU. Excepted "
"LodTensor, But received [%s] and [%s]",
paddle::framework::ToTypeName(param_var->Type())));
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_XPU_KERNEL(
sgd, ops::SGDOpXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
68 changes: 68 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_momentum_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,68 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import sys
import os
sys.path.append("..")
from op_test import OpTest
import paddle
from paddle.fluid import core
from paddle.fluid.op import Operator


class TestMomentumOp1(OpTest):
def setUp(self):
self.op_type = "momentum"
self.dtype = np.float32
self.init_dtype()

param = np.random.random((123, 321)).astype(self.dtype)
grad = np.random.random((123, 321)).astype(self.dtype)
velocity = np.zeros((123, 321)).astype(self.dtype)
learning_rate = np.array([0.001]).astype(self.dtype)
mu = 0.0001
use_nesterov = False

self.inputs = {
'Param': param,
'Grad': grad,
'Velocity': velocity,
'LearningRate': learning_rate
}

self.attrs = {'mu': mu}

velocity_out = mu * velocity + grad
if use_nesterov:
param_out = param - grad * learning_rate - \
velocity_out * mu * learning_rate
else:
param_out = param - learning_rate * velocity_out

self.outputs = {'ParamOut': param_out, 'VelocityOut': velocity_out}

def init_dtype(self):
pass

def test_check_output_with_place(self):
self.check_output_with_place(paddle.XPUPlace(0))


if __name__ == "__main__":
paddle.enable_static()
unittest.main()
75 changes: 75 additions & 0 deletions python/paddle/fluid/tests/unittests/xpu/test_sgd_op_xpu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import sys
import os
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid.op import Operator


class TestSGDOp(OpTest):
def setUp(self):
self.op_type = "sgd"
self.conf()
w = np.random.random((self.h, self.w)).astype("float32")
g = np.random.random((self.h, self.w)).astype("float32")
lr = np.array([0.1]).astype("float32")

self.inputs = {'Param': w, 'Grad': g, 'LearningRate': lr}
self.outputs = {'ParamOut': w - lr * g}

def conf(self):
self.h = 102
self.w = 105

def test_check_output_with_place(self):
self.check_output_with_place(paddle.XPUPlace(0))


class TestSGDOpCase8X(TestSGDOp):
def conf(self):
self.h = 10
self.w = 64


class TestSGDOpWithLargeInput(unittest.TestCase):
def runTest(self):
data = fluid.layers.fill_constant(shape=[1], value=128, dtype='int64')
label = fluid.layers.fill_constant(
shape=[1, 150], value=0.5, dtype='float32')
emb = fluid.embedding(input=data, size=(10000, 150), dtype='float32')
out = fluid.layers.l2_normalize(x=emb, axis=-1)

cost = fluid.layers.square_error_cost(input=out, label=label)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)

place = paddle.XPUPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
result = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])


if __name__ == "__main__":
paddle.enable_static()
unittest.main()

0 comments on commit 1607e87

Please sign in to comment.