Skip to content

Commit

Permalink
[NPU] Support npu op pow and pow grad (#31247)
Browse files Browse the repository at this point in the history
* [NPU] Support npu op: (1) pow (2) pow_grad

* Support fp16
  • Loading branch information
liym27 authored Feb 26, 2021
1 parent 821c2f4 commit 187248f
Show file tree
Hide file tree
Showing 3 changed files with 295 additions and 0 deletions.
16 changes: 16 additions & 0 deletions paddle/fluid/memory/memcpy.cc
Original file line number Diff line number Diff line change
Expand Up @@ -208,8 +208,16 @@ void Copy<platform::NPUPlace, platform::CPUPlace>(platform::NPUPlace dst_place,
if (UNLIKELY(num == 0)) return;

platform::SetNPUDeviceId(dst_place.device);

// NOTE(ascendrc): NPU memcpy async from host to device is a "real" async,
// which is different from CUDA. In Paddle, when async is called, "sync"
// is run actually, which means Paddle doesn't fully supported async.
// TODO(ascendrc): Support NPU memcpy async for better performance.
stream = nullptr;

VLOG(4) << "memory::Copy " << num << " Bytes from " << src_place << " to "
<< dst_place << " by thream(" << stream << ")";

if (stream) {
platform::RecordEvent record_event("NpuMemcpyAsync:CPU->NPU");
platform::NPUMemcpyAsync(dst, src, num, ACL_MEMCPY_HOST_TO_DEVICE, stream);
Expand All @@ -228,8 +236,16 @@ void Copy<platform::CPUPlace, platform::NPUPlace>(platform::CPUPlace dst_place,
if (UNLIKELY(num == 0)) return;

platform::SetNPUDeviceId(src_place.device);

// NOTE(ascendrc): NPU memcpy async from device to host is a "real" async,
// which is different from CUDA. In Paddle, when async is called, "sync"
// is run actually, which means Paddle doesn't fully supported async.
// TODO(ascendrc): Support NPU memcpy async for better performance.
stream = nullptr;

VLOG(4) << "memory::Copy " << num << " Bytes from " << src_place << " to "
<< dst_place << " by thream(" << stream << ")";

if (stream) {
platform::RecordEvent record_event("NpuMemcpyAsync:NPU->CPU");
platform::NPUMemcpyAsync(dst, src, num, ACL_MEMCPY_DEVICE_TO_HOST, stream);
Expand Down
127 changes: 127 additions & 0 deletions paddle/fluid/operators/activation_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the Licnse. */

#ifdef PADDLE_WITH_ASCEND_CL
#include <memory>
#include <string>

#include "paddle/fluid/framework/ddim.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class PowNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* out = ctx.Output<Tensor>("Out");
auto factor = ctx.Attr<float>("factor");

out->mutable_data<T>(ctx.GetPlace());

auto runner = NpuOpRunner("Power", {*x}, {*out},
{{"power", factor},
{"scale", static_cast<float>(1.0)},
{"shift", static_cast<float>(0.0)}});

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
runner.Run(stream);
}
};

template <typename DeviceContext, typename T>
class PowGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<Tensor>("X");
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
auto factor = ctx.Attr<float>("factor");

auto x_dims = x->dims();

auto place = ctx.GetPlace();
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();

// NOTE(liym27): dx = dout * factor * x.pow(factor-1)

// Step1: Compute x_pow = x.pow(factor-1)
Tensor x_pow(x->type());
x_pow.mutable_data<T>(x->dims(), place);
auto runner_pow = NpuOpRunner("Power", {*x}, {x_pow},
{{"power", factor - static_cast<float>(1)}});
runner_pow.Run(stream);

// Step 2: Construct a broadcast factor, which has the same shape with x.
// 2.1 Get the shape of x
Tensor x_shape(framework::proto::VarType::INT32);
x_shape.mutable_data<int32_t>({x_dims.size()}, place);
TensorFromVector(framework::vectorize<int32_t>(x_dims),
ctx.device_context(), &x_shape);

// 2.2 Get a factor tensor with shape [1].
Tensor factor_tensor(framework::proto::VarType::FP32);
factor_tensor.mutable_data<float>({1}, place);
TensorFromVector(std::vector<float>{factor}, ctx.device_context(),
&factor_tensor);

// 2.3 Get the factor which has the shape with x and the same value with
// factor.
Tensor factor_bc_tensor(framework::proto::VarType::FP32);
factor_bc_tensor.mutable_data<float>(x_dims, place);
auto runner_bc = NpuOpRunner("BroadcastTo", {factor_tensor, x_shape},
{factor_bc_tensor}, {});
runner_bc.Run(stream);

// Step 3: Compute x_power_mul_factor = factor * x.pow(factor-1)
Tensor x_power_mul_factor(x->type());
x_power_mul_factor.mutable_data<T>(x->dims(), place);
auto runner_mul_1 =
NpuOpRunner("Mul", {factor_bc_tensor, *x}, {x_power_mul_factor}, {});
runner_mul_1.Run(stream);

// Step 4: Compute dx = dout * factor * x.pow(factor-1)
dx->mutable_data<T>(place);
auto runner_mul_2 =
NpuOpRunner("Mul", {*dout, x_power_mul_factor}, {*dx}, {});
runner_mul_2.Run(stream);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
pow, ops::PowNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::PowNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);

REGISTER_OP_NPU_KERNEL(
pow_grad, ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::PowGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);

#endif
152 changes: 152 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_pow_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,152 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestPow(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "pow"
self.place = paddle.NPUPlace(0)

self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, 3)

self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'factor': 3.0}
self.outputs = {'Out': out}

def set_npu(self):
self.__class__.use_npu = True

def init_dtype(self):
self.dtype = np.float32

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)

# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestPowFp16(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "pow"
self.place = paddle.NPUPlace(0)

self.init_dtype()
np.random.seed(SEED)
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype)
out = np.power(x, 3)

self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
self.attrs = {'factor': 3.0}
self.outputs = {'Out': out}

def set_npu(self):
self.__class__.use_npu = True

def init_dtype(self):
self.dtype = np.float16

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestSubtractNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)

a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')

with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')

sum = paddle.add(a, b)
z = paddle.pow(sum, 2.0)

fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)

if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()

exe = paddle.static.Executor(place)
exe.run(startup_prog)

for epoch in range(100):

pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))

return pred_res, loss_res

def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)

self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))


if __name__ == '__main__':
unittest.main()

0 comments on commit 187248f

Please sign in to comment.