-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2373 from qingqing01/row_conv
Row convolution operation.
- Loading branch information
Showing
15 changed files
with
1,028 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "RowConvOp.h" | ||
#include <iostream> | ||
#include "paddle/math/Vector.h" | ||
|
||
namespace paddle { | ||
|
||
template <> | ||
void RowConv<DEVICE_TYPE_CPU>(CpuMatrix& out, | ||
const CpuMatrix& in, | ||
const CpuMatrix& filter, | ||
const CpuIVector& seq) { | ||
const int* starts = seq.getData(); | ||
const size_t numSeq = seq.getSize() - 1; | ||
const size_t contextLength = filter.getHeight(); | ||
for (size_t i = 0; i < numSeq; ++i) { | ||
size_t begin = starts[i]; | ||
size_t end = starts[i + 1]; | ||
for (size_t j = begin; j < end; ++j) { | ||
MatrixPtr x; | ||
MatrixPtr w; | ||
if ((j + contextLength) < end) { | ||
x = (const_cast<CpuMatrix&>(in)).subMatrix(j, contextLength); | ||
w = (const_cast<CpuMatrix&>(filter)).subMatrix(0, contextLength); | ||
} else { | ||
x = (const_cast<CpuMatrix&>(in)).subMatrix(j, end - j); | ||
w = (const_cast<CpuMatrix&>(filter)).subMatrix(0, end - j); | ||
} | ||
MatrixPtr y = out.subMatrix(j, 1); | ||
y->addDotMulVMM(*x, *w); | ||
} | ||
} | ||
} | ||
|
||
template <> | ||
void RowConvGrad<DEVICE_TYPE_CPU>(const CpuMatrix& outG, | ||
const CpuMatrix& in, | ||
const CpuMatrix& filter, | ||
CpuMatrix& inG, | ||
CpuMatrix& filterG, | ||
const CpuIVector& seq) { | ||
// gradient w.r.t filter | ||
const int* starts = seq.getData(); | ||
const size_t numSeq = seq.getSize() - 1; | ||
const size_t contextLength = filter.getHeight(); | ||
if (filterG) { | ||
for (size_t i = 0; i < numSeq; ++i) { | ||
size_t begin = starts[i]; | ||
size_t end = starts[i + 1]; | ||
size_t steps = end - begin; | ||
for (size_t j = 0; j < contextLength && (begin + j) < end; ++j) { | ||
MatrixPtr x = | ||
(const_cast<CpuMatrix&>(in)).subMatrix(begin + j, steps - j); | ||
MatrixPtr dy = | ||
(const_cast<CpuMatrix&>(outG)).subMatrix(begin, steps - j); | ||
MatrixPtr dw = filterG.subMatrix(j, 1); | ||
dw->addDotMulVMM(*dy, *x); | ||
} | ||
} | ||
} | ||
|
||
// gradient w.r.t input feature | ||
if (inG) { | ||
for (size_t i = 0; i < numSeq; ++i) { | ||
size_t begin = starts[i]; | ||
size_t end = starts[i + 1]; | ||
size_t steps = end - begin; | ||
for (size_t j = 0; j < steps; ++j) { | ||
MatrixPtr dx = inG.subMatrix(begin + j, 1); | ||
for (size_t t = 0; t < contextLength; ++t) { | ||
if (int(j - t) >= 0) { | ||
MatrixPtr dy = | ||
(const_cast<CpuMatrix&>(outG)).subMatrix(begin + j - t, 1); | ||
MatrixPtr w = (const_cast<CpuMatrix&>(filter)).subMatrix(t, 1); | ||
dx->addDotMul(*dy, *w, 1.0, 1.0); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
/** | ||
* \brief The row convolution is called lookahead convolution. It is firstly | ||
* introduced in deep-speech2 system. The bidirectional RNN that learns | ||
* representation for a sequence by performing a forward and a backward pass | ||
* through the entire sequence. However, unlike unidirectional RNNs, | ||
* bidirectional RNNs are challenging to deploy in an online and low-latency | ||
* setting. The lookahead convolution incorporates information from future | ||
* subsequences in a computationally efficient manner to improve unidirectional | ||
* recurrent neural networks. | ||
* | ||
* The connection of row convolution is different form the 1D sequence | ||
* convolution. Assumed that, the future context-length is k, that is to say, | ||
* it can get the output at timestep t by using the the input feature from t-th | ||
* timestep to (t+k)-th timestep. Assumed that the hidden dim of input | ||
* activations are d, the activations r_t for the new layer at time-step t are: | ||
* | ||
* | ||
* -- k + 1 | ||
* r(t,i) = > W(i,j) * h(t+j-1, i), for (1 <= i <= d) | ||
* -- j = 1 | ||
* | ||
* | ||
* The weight shape is: (k + 1) x d | ||
* Function Arguments: | ||
* | ||
* \param inputs[0] The input activations. | ||
* \param inputs[0] The filter (or weight) and shape is (k+1) x d. | ||
* \param outputs[1] The output activations. | ||
* | ||
* [1] Dario Amodei, etc. Deep Speech 2 : End-to-End Speech Recognition in | ||
* English | ||
* and Mandarin. https://arxiv.org/abs/1512.02595 | ||
*/ | ||
|
||
template <DeviceType Device> | ||
class RowConvFunc : public FunctionBase { | ||
public: | ||
void init(const FuncConfig& config) override {} | ||
|
||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { | ||
// check | ||
CHECK_EQ(2UL, inputs.size()); | ||
CHECK_EQ(1UL, outputs.size()); | ||
// TODO(qingqing): support ASSIGN_TO. | ||
CHECK_EQ(outputs[0].getArgType(), ADD_TO); | ||
CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg()) | ||
<< "SequenceArg required here."; | ||
const auto in = dynamic_cast<const SequenceArg&>(inputs[0]); | ||
auto out = dynamic_cast<const SequenceArg&>(outputs[0]); | ||
auto w = inputs[1]; | ||
CHECK(in.data() && out.data() && in.getSequenceId().data()); | ||
CHECK_EQ(in.shape().ndims(), 2UL); | ||
CHECK(in.shape() == out.shape()); | ||
CHECK_EQ(w.shape()[1], in.shape()[1]); | ||
|
||
auto outMat = out.matrix<Device>(); | ||
const auto inMat = in.matrix<Device>(); | ||
const auto wMat = w.matrix<Device>(); | ||
const auto seqId = in.getSequenceId().vector<int, Device>(); | ||
|
||
RowConv<Device>(outMat, inMat, wMat, seqId); | ||
} | ||
}; | ||
|
||
/** | ||
* \brief The backward of row convolution function. This function calculated | ||
* the gradient w.r.t filter and the gradient w.r.t input activations(or data). | ||
* | ||
* Argument in this Function: | ||
* | ||
* \param inputs[0] The gradient w.r.t output activations. | ||
* \param inputs[1] The input activations. | ||
* \param inputs[2] The filter (or weight) and shape is (k+1) x d. | ||
* \param outputs[0] The gradient w.r.t input activations. | ||
* \param outputs[1] The gradient w.r.r filter. | ||
* | ||
* Abbreviation: | ||
* w.r.t: with respect to. | ||
*/ | ||
|
||
template <DeviceType Device> | ||
class RowConvGradFunc : public FunctionBase { | ||
// TODO(qingqing): split into RowConvDataFunc and RowConvWeightFunc | ||
public: | ||
void init(const FuncConfig& config) override {} | ||
|
||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { | ||
// check | ||
CHECK_EQ(3UL, inputs.size()); | ||
CHECK_EQ(2UL, outputs.size()); | ||
CHECK_EQ(outputs[0].getArgType(), ADD_TO); | ||
CHECK_EQ(outputs[1].getArgType(), ADD_TO); | ||
CHECK(inputs[0].isSequenceArg() && inputs[1].isSequenceArg() && | ||
outputs[0].isSequenceArg()) | ||
<< "SequenceArg required here."; | ||
|
||
const auto outGrad = dynamic_cast<const SequenceArg&>(inputs[0]); | ||
const auto in = dynamic_cast<const SequenceArg&>(inputs[1]); | ||
const auto w = inputs[2]; | ||
auto inGrad = dynamic_cast<const SequenceArg&>(outputs[0]); | ||
auto wGrad = outputs[1]; | ||
|
||
CHECK_EQ(in.shape().ndims(), 2UL); | ||
CHECK(in.shape() == inGrad.shape()); | ||
CHECK(in.shape() == outGrad.shape()); | ||
CHECK_EQ(wGrad.shape()[1], in.shape()[1]); | ||
|
||
const auto outGMat = outGrad.matrix<Device>(); | ||
const auto inMat = in.matrix<Device>(); | ||
const auto wMat = w.matrix<Device>(); | ||
auto inGMat = inGrad.data() | ||
? inGrad.matrix<Device>() | ||
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0); | ||
auto wGMat = wGrad.data() | ||
? wGrad.matrix<Device>() | ||
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0); | ||
const auto seqId = in.getSequenceId().vector<int, Device>(); | ||
|
||
RowConvGrad<Device>(outGMat, inMat, wMat, inGMat, wGMat, seqId); | ||
} | ||
}; | ||
|
||
REGISTER_TYPED_FUNC(RowConv, CPU, RowConvFunc); | ||
REGISTER_TYPED_FUNC(RowConvGrad, CPU, RowConvGradFunc); | ||
#ifndef PADDLE_ONLY_CPU | ||
REGISTER_TYPED_FUNC(RowConv, GPU, RowConvFunc); | ||
REGISTER_TYPED_FUNC(RowConvGrad, GPU, RowConvGradFunc); | ||
#endif | ||
|
||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "Function.h" | ||
|
||
namespace paddle { | ||
|
||
/** | ||
* \brief The forward of row convolution. | ||
* | ||
* \param[out] out The output data and shape is h x d. h is the sum of | ||
* time steps of all samples in one mini-batch. | ||
* \param[in] in The input data and shape is h x d. | ||
* \param[in] filter The filter and shape is k x d. The lookahead step | ||
* number plus one equals k. | ||
* \param[in] seq The sequence start positions. | ||
* | ||
*/ | ||
template <DeviceType DType> | ||
void RowConv(typename Tensor<real, DType>::Matrix& out, | ||
const typename Tensor<real, DType>::Matrix& in, | ||
const typename Tensor<real, DType>::Matrix& filter, | ||
const typename Tensor<int, DType>::Vector& seq); | ||
|
||
/** | ||
* \brief The backward of row convolution. | ||
* | ||
* \param[in] outG The gradient w.r.t output data. | ||
* \param[in] in The input data. | ||
* \param[in] filter The filter. | ||
* \param[out] inG The gradient w.r.t input data. | ||
* \param[out] filterG The gradient w.r.t filter. | ||
* \param[in] seq The sequence start positions. | ||
* | ||
*/ | ||
template <DeviceType DType> | ||
void RowConvGrad(const typename Tensor<real, DType>::Matrix& outG, | ||
const typename Tensor<real, DType>::Matrix& in, | ||
const typename Tensor<real, DType>::Matrix& filter, | ||
typename Tensor<real, DType>::Matrix& inG, | ||
typename Tensor<real, DType>::Matrix& filterG, | ||
const typename Tensor<int, DType>::Vector& seq); | ||
} // namespace paddle |
Oops, something went wrong.