-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add interface and test of RecurrentGradientMachine (#156)
* add interface and unittest of RecurrentGradientMachine for the function of multiple Subsequence inlinks with unequal token length
- Loading branch information
Showing
5 changed files
with
246 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
106 changes: 106 additions & 0 deletions
106
paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,106 @@ | ||
#edit-mode: -*- python -*- | ||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from paddle.trainer_config_helpers import * | ||
|
||
######################## data source ################################ | ||
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list', | ||
test_list=None, | ||
module='rnn_data_provider', | ||
obj='process_unequalength_subseq') | ||
|
||
|
||
settings(batch_size=2, learning_rate=0.01) | ||
######################## network configure ################################ | ||
dict_dim = 10 | ||
word_dim = 8 | ||
hidden_dim = 8 | ||
label_dim = 2 | ||
|
||
speaker1 = data_layer(name="word1", size=dict_dim) | ||
speaker2 = data_layer(name="word2", size=dict_dim) | ||
|
||
emb1 = embedding_layer(input=speaker1, size=word_dim) | ||
emb2 = embedding_layer(input=speaker2, size=word_dim) | ||
|
||
# This hierachical RNN is designed to be equivalent to the simple RNN in | ||
# sequence_rnn_multi_unequalength_inputs.conf | ||
|
||
def outer_step(x1, x2): | ||
outer_mem1 = memory(name = "outer_rnn_state1", size = hidden_dim) | ||
outer_mem2 = memory(name = "outer_rnn_state2", size = hidden_dim) | ||
def inner_step1(y): | ||
inner_mem = memory(name = 'inner_rnn_state_' + y.name, | ||
size = hidden_dim, | ||
boot_layer = outer_mem1) | ||
out = fc_layer(input = [y, inner_mem], | ||
size = hidden_dim, | ||
act = TanhActivation(), | ||
bias_attr = True, | ||
name = 'inner_rnn_state_' + y.name) | ||
return out | ||
|
||
def inner_step2(y): | ||
inner_mem = memory(name = 'inner_rnn_state_' + y.name, | ||
size = hidden_dim, | ||
boot_layer = outer_mem2) | ||
out = fc_layer(input = [y, inner_mem], | ||
size = hidden_dim, | ||
act = TanhActivation(), | ||
bias_attr = True, | ||
name = 'inner_rnn_state_' + y.name) | ||
return out | ||
|
||
encoder1 = recurrent_group( | ||
step = inner_step1, | ||
name = 'inner1', | ||
input = x1) | ||
|
||
encoder2 = recurrent_group( | ||
step = inner_step2, | ||
name = 'inner2', | ||
input = x2) | ||
|
||
sentence_last_state1 = last_seq(input = encoder1, name = 'outer_rnn_state1') | ||
sentence_last_state2_ = last_seq(input = encoder2, name = 'outer_rnn_state2') | ||
|
||
encoder1_expand = expand_layer(input = sentence_last_state1, | ||
expand_as = encoder2) | ||
|
||
return [encoder1_expand, encoder2] | ||
|
||
|
||
encoder1_rep, encoder2_rep = recurrent_group( | ||
name="outer", | ||
step=outer_step, | ||
input=[SubsequenceInput(emb1), SubsequenceInput(emb2)], | ||
targetInlink=emb2) | ||
|
||
encoder1_last = last_seq(input = encoder1_rep) | ||
encoder1_expandlast = expand_layer(input = encoder1_last, | ||
expand_as = encoder2_rep) | ||
context = mixed_layer(input = [identity_projection(encoder1_expandlast), | ||
identity_projection(encoder2_rep)], | ||
size = hidden_dim) | ||
|
||
rep = last_seq(input=context) | ||
prob = fc_layer(size=label_dim, | ||
input=rep, | ||
act=SoftmaxActivation(), | ||
bias_attr=True) | ||
|
||
outputs(classification_cost(input=prob, | ||
label=data_layer(name="label", size=label_dim))) | ||
|
75 changes: 75 additions & 0 deletions
75
paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.conf
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,75 @@ | ||
#edit-mode: -*- python -*- | ||
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from paddle.trainer_config_helpers import * | ||
|
||
######################## data source ################################ | ||
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list', | ||
test_list=None, | ||
module='rnn_data_provider', | ||
obj='process_unequalength_seq') | ||
|
||
|
||
settings(batch_size=2, learning_rate=0.01) | ||
######################## network configure ################################ | ||
dict_dim = 10 | ||
word_dim = 8 | ||
hidden_dim = 8 | ||
label_dim = 2 | ||
|
||
speaker1 = data_layer(name="word1", size=dict_dim) | ||
speaker2 = data_layer(name="word2", size=dict_dim) | ||
|
||
emb1 = embedding_layer(input=speaker1, size=word_dim) | ||
emb2 = embedding_layer(input=speaker2, size=word_dim) | ||
|
||
# This hierachical RNN is designed to be equivalent to the RNN in | ||
# sequence_nest_rnn_multi_unequalength_inputs.conf | ||
|
||
def step(x1, x2): | ||
def calrnn(y): | ||
mem = memory(name = 'rnn_state_' + y.name, size = hidden_dim) | ||
out = fc_layer(input = [y, mem], | ||
size = hidden_dim, | ||
act = TanhActivation(), | ||
bias_attr = True, | ||
name = 'rnn_state_' + y.name) | ||
return out | ||
|
||
encoder1 = calrnn(x1) | ||
encoder2 = calrnn(x2) | ||
return [encoder1, encoder2] | ||
|
||
encoder1_rep, encoder2_rep = recurrent_group( | ||
name="stepout", | ||
step=step, | ||
input=[emb1, emb2]) | ||
|
||
encoder1_last = last_seq(input = encoder1_rep) | ||
encoder1_expandlast = expand_layer(input = encoder1_last, | ||
expand_as = encoder2_rep) | ||
context = mixed_layer(input = [identity_projection(encoder1_expandlast), | ||
identity_projection(encoder2_rep)], | ||
size = hidden_dim) | ||
|
||
rep = last_seq(input=context) | ||
prob = fc_layer(size=label_dim, | ||
input=rep, | ||
act=SoftmaxActivation(), | ||
bias_attr=True) | ||
|
||
outputs(classification_cost(input=prob, | ||
label=data_layer(name="label", size=label_dim))) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters