Skip to content

Commit

Permalink
add interface and test of RecurrentGradientMachine (#156)
Browse files Browse the repository at this point in the history
* add interface and unittest of RecurrentGradientMachine for the function of multiple Subsequence inlinks with unequal token length
  • Loading branch information
Zrachel authored and luotao1 committed Oct 8, 2016
1 parent 1c09e9d commit 1c2ebe4
Show file tree
Hide file tree
Showing 5 changed files with 246 additions and 4 deletions.
30 changes: 28 additions & 2 deletions paddle/gserver/tests/rnn_data_provider.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,19 +21,45 @@


@provider(input_types=[integer_value_sub_sequence(10),
integer_value(2)],
integer_value(3)],
should_shuffle=False)
def process_subseq(settings, file_name):
for d in data:
yield d


@provider(input_types=[integer_value_sequence(10),
integer_value(2)],
integer_value(3)],
should_shuffle=False)
def process_seq(settings, file_name):
for d in data:
seq = []
for subseq in d[0]:
seq += subseq
yield seq, d[1]

data2 = [
[[[1, 2], [4, 5, 2]], [[5, 4, 1], [3, 1]] ,0],
[[[0, 2], [2, 5], [0, 1, 2]],[[1, 5], [4], [2, 3, 6, 1]], 1],
]

@provider(input_types=[integer_value_sub_sequence(10),
integer_value_sub_sequence(10),
integer_value(2)],
should_shuffle=False)
def process_unequalength_subseq(settings, file_name):
for d in data2:
yield d


@provider(input_types=[integer_value_sequence(10),
integer_value_sequence(10),
integer_value(2)],
should_shuffle=False)
def process_unequalength_seq(settings, file_name):
for d in data2:
words1=reduce(lambda x,y: x+y, d[0])
words2=reduce(lambda x,y: x+y, d[1])
yield words1, words2, d[2]


106 changes: 106 additions & 0 deletions paddle/gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
#edit-mode: -*- python -*-
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

######################## data source ################################
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
test_list=None,
module='rnn_data_provider',
obj='process_unequalength_subseq')


settings(batch_size=2, learning_rate=0.01)
######################## network configure ################################
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 2

speaker1 = data_layer(name="word1", size=dict_dim)
speaker2 = data_layer(name="word2", size=dict_dim)

emb1 = embedding_layer(input=speaker1, size=word_dim)
emb2 = embedding_layer(input=speaker2, size=word_dim)

# This hierachical RNN is designed to be equivalent to the simple RNN in
# sequence_rnn_multi_unequalength_inputs.conf

def outer_step(x1, x2):
outer_mem1 = memory(name = "outer_rnn_state1", size = hidden_dim)
outer_mem2 = memory(name = "outer_rnn_state2", size = hidden_dim)
def inner_step1(y):
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
size = hidden_dim,
boot_layer = outer_mem1)
out = fc_layer(input = [y, inner_mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'inner_rnn_state_' + y.name)
return out

def inner_step2(y):
inner_mem = memory(name = 'inner_rnn_state_' + y.name,
size = hidden_dim,
boot_layer = outer_mem2)
out = fc_layer(input = [y, inner_mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'inner_rnn_state_' + y.name)
return out

encoder1 = recurrent_group(
step = inner_step1,
name = 'inner1',
input = x1)

encoder2 = recurrent_group(
step = inner_step2,
name = 'inner2',
input = x2)

sentence_last_state1 = last_seq(input = encoder1, name = 'outer_rnn_state1')
sentence_last_state2_ = last_seq(input = encoder2, name = 'outer_rnn_state2')

encoder1_expand = expand_layer(input = sentence_last_state1,
expand_as = encoder2)

return [encoder1_expand, encoder2]


encoder1_rep, encoder2_rep = recurrent_group(
name="outer",
step=outer_step,
input=[SubsequenceInput(emb1), SubsequenceInput(emb2)],
targetInlink=emb2)

encoder1_last = last_seq(input = encoder1_rep)
encoder1_expandlast = expand_layer(input = encoder1_last,
expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
identity_projection(encoder2_rep)],
size = hidden_dim)

rep = last_seq(input=context)
prob = fc_layer(size=label_dim,
input=rep,
act=SoftmaxActivation(),
bias_attr=True)

outputs(classification_cost(input=prob,
label=data_layer(name="label", size=label_dim)))

75 changes: 75 additions & 0 deletions paddle/gserver/tests/sequence_rnn_multi_unequalength_inputs.conf
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
#edit-mode: -*- python -*-
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.trainer_config_helpers import *

######################## data source ################################
define_py_data_sources2(train_list='gserver/tests/Sequence/dummy.list',
test_list=None,
module='rnn_data_provider',
obj='process_unequalength_seq')


settings(batch_size=2, learning_rate=0.01)
######################## network configure ################################
dict_dim = 10
word_dim = 8
hidden_dim = 8
label_dim = 2

speaker1 = data_layer(name="word1", size=dict_dim)
speaker2 = data_layer(name="word2", size=dict_dim)

emb1 = embedding_layer(input=speaker1, size=word_dim)
emb2 = embedding_layer(input=speaker2, size=word_dim)

# This hierachical RNN is designed to be equivalent to the RNN in
# sequence_nest_rnn_multi_unequalength_inputs.conf

def step(x1, x2):
def calrnn(y):
mem = memory(name = 'rnn_state_' + y.name, size = hidden_dim)
out = fc_layer(input = [y, mem],
size = hidden_dim,
act = TanhActivation(),
bias_attr = True,
name = 'rnn_state_' + y.name)
return out

encoder1 = calrnn(x1)
encoder2 = calrnn(x2)
return [encoder1, encoder2]

encoder1_rep, encoder2_rep = recurrent_group(
name="stepout",
step=step,
input=[emb1, emb2])

encoder1_last = last_seq(input = encoder1_rep)
encoder1_expandlast = expand_layer(input = encoder1_last,
expand_as = encoder2_rep)
context = mixed_layer(input = [identity_projection(encoder1_expandlast),
identity_projection(encoder2_rep)],
size = hidden_dim)

rep = last_seq(input=context)
prob = fc_layer(size=label_dim,
input=rep,
act=SoftmaxActivation(),
bias_attr=True)

outputs(classification_cost(input=prob,
label=data_layer(name="label", size=label_dim)))

9 changes: 9 additions & 0 deletions paddle/gserver/tests/test_RecurrentGradientMachine.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -73,6 +73,7 @@ void CalCost(const string& conf, const string& dir, real* cost,

*ThreadLocalRand::getSeed() = FLAGS_seed;
vecW.randnorm(0, 0.1);
vecMomentum.randnorm(0, 0.1);

trainer.startTrain();
for (int i = 0; i < num_passes; ++i) {
Expand Down Expand Up @@ -140,6 +141,14 @@ TEST(RecurrentGradientMachine, rnn_multi_input) {
}
}

TEST(RecurrentGradientMachine, rnn_multi_unequalength_input) {
for (bool useGpu : {false, true}) {
test("gserver/tests/sequence_rnn_multi_unequalength_inputs.conf",
"gserver/tests/sequence_nest_rnn_multi_unequalength_inputs.conf",
1e-6, useGpu);
}
}

int main(int argc, char** argv) {
if (paddle::version::isWithPyDataProvider()) {
if (!paddle::version::isWithGpu()) {
Expand Down
30 changes: 28 additions & 2 deletions python/paddle/trainer_config_helpers/layers.py
Original file line number Diff line number Diff line change
Expand Up @@ -2347,7 +2347,7 @@ def __init__(self, input):


@wrap_name_default("recurrent_group")
def recurrent_group(step, input, reverse=False, name=None):
def recurrent_group(step, input, reverse=False, name=None, targetInlink=None):
"""
Recurrent layer group is an extremely flexible recurrent unit in
PaddlePaddle. As long as the user defines the calculation done within a
Expand Down Expand Up @@ -2401,6 +2401,17 @@ def step(input):
:param reverse: If reverse is set true, the recurrent unit will process the
input sequence in a reverse order.
:type reverse: bool
:param targetInlink: the input layer which share info with layer group's output
Param input specifies multiple input layers. For
SubsequenceInput inputs, config should assign one input
layer that share info(the number of sentences and the number
of words in each sentence) with all layer group's outputs.
targetInlink should be one of the layer group's input.
:type targetInlink: LayerOutput|SubsequenceInput
:return: LayerOutput object.
:rtype: LayerOutput
"""
Expand All @@ -2419,6 +2430,20 @@ def is_in_links(x):

in_links = filter(is_in_links, input)

def targetInlink_in_inlinks():
for inlink in in_links:
if isinstance(inlink, SubsequenceInput):
if targetInlink == inlink.input:
return True
elif targetInlink == inlink:
return True
return False

assert(targetInlink == None or targetInlink_in_inlinks())
targetInlinkName = None if targetInlink == None \
else targetInlink.name if isinstance(targetInlink, LayerOutput) \
else targetInlink.input.name

contains_sub_seq = [False]

def map_in_links(x):
Expand All @@ -2430,7 +2455,8 @@ def map_in_links(x):

RecurrentLayerGroupWithoutOutLinksBegin(
name=name, in_links=map(map_in_links, in_links),
seq_reversed=reverse)
seq_reversed=reverse,
target_inlinkname=targetInlinkName)
in_args = []
for each_input in input:
assert is_single_input(each_input)
Expand Down

0 comments on commit 1c2ebe4

Please sign in to comment.