-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #668 from qingqing01/acc_image_proc
Accelerating image processing for CNN
- Loading branch information
Showing
2 changed files
with
279 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,262 @@ | ||
import os, sys | ||
import numpy as np | ||
from PIL import Image | ||
from cStringIO import StringIO | ||
import multiprocessing | ||
import functools | ||
import itertools | ||
|
||
from paddle.utils.image_util import * | ||
from paddle.trainer.config_parser import logger | ||
|
||
try: | ||
import cv2 | ||
except ImportError: | ||
logger.warning("OpenCV2 is not installed, using PIL to prcoess") | ||
cv2 = None | ||
|
||
__all__ = ["CvTransformer", "PILTransformer", "MultiProcessImageTransformer"] | ||
|
||
|
||
class CvTransformer(ImageTransformer): | ||
""" | ||
CvTransformer used python-opencv to process image. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
min_size=None, | ||
crop_size=None, | ||
transpose=(2, 0, 1), # transpose to C * H * W | ||
channel_swap=None, | ||
mean=None, | ||
is_train=True, | ||
is_color=True): | ||
ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color) | ||
self.min_size = min_size | ||
self.crop_size = crop_size | ||
self.is_train = is_train | ||
|
||
def resize(self, im, min_size): | ||
row, col = im.shape[:2] | ||
new_row, new_col = min_size, min_size | ||
if row > col: | ||
new_row = min_size * row / col | ||
else: | ||
new_col = min_size * col / row | ||
im = cv2.resize(im, (new_row, new_col), interpolation=cv2.INTER_CUBIC) | ||
return im | ||
|
||
def crop_and_flip(self, im): | ||
""" | ||
Return cropped image. | ||
The size of the cropped image is inner_size * inner_size. | ||
im: (H x W x K) ndarrays | ||
""" | ||
row, col = im.shape[:2] | ||
start_h, start_w = 0, 0 | ||
if self.is_train: | ||
start_h = np.random.randint(0, row - self.crop_size + 1) | ||
start_w = np.random.randint(0, col - self.crop_size + 1) | ||
else: | ||
start_h = (row - self.crop_size) / 2 | ||
start_w = (col - self.crop_size) / 2 | ||
end_h, end_w = start_h + self.crop_size, start_w + self.crop_size | ||
if self.is_color: | ||
im = im[start_h:end_h, start_w:end_w, :] | ||
else: | ||
im = im[start_h:end_h, start_w:end_w] | ||
if (self.is_train) and (np.random.randint(2) == 0): | ||
if self.is_color: | ||
im = im[:, ::-1, :] | ||
else: | ||
im = im[:, ::-1] | ||
return im | ||
|
||
def transform(self, im): | ||
im = self.resize(im, self.min_size) | ||
im = self.crop_and_flip(im) | ||
# transpose, swap channel, sub mean | ||
im = im.astype('float32') | ||
ImageTransformer.transformer(self, im) | ||
return im | ||
|
||
def load_image_from_string(self, data): | ||
flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE | ||
im = cv2.imdecode(np.fromstring(data, np.uint8), flag) | ||
return im | ||
|
||
def transform_from_string(self, data): | ||
im = self.load_image_from_string(data) | ||
return self.transform(im) | ||
|
||
def load_image_from_file(self, file): | ||
flag = cv2.CV_LOAD_IMAGE_COLOR if self.is_color else cv2.CV_LOAD_IMAGE_GRAYSCALE | ||
im = cv2.imread(file, flag) | ||
return im | ||
|
||
def transform_from_file(self, file): | ||
im = self.load_image_from_file(file) | ||
return self.transform(im) | ||
|
||
|
||
class PILTransformer(ImageTransformer): | ||
""" | ||
PILTransformer used PIL to process image. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
min_size=None, | ||
crop_size=None, | ||
transpose=(2, 0, 1), # transpose to C * H * W | ||
channel_swap=None, | ||
mean=None, | ||
is_train=True, | ||
is_color=True): | ||
ImageTransformer.__init__(self, transpose, channel_swap, mean, is_color) | ||
self.min_size = min_size | ||
self.crop_size = crop_size | ||
self.is_train = is_train | ||
|
||
def resize(self, im, min_size): | ||
row, col = im.size[:2] | ||
new_row, new_col = min_size, min_size | ||
if row > col: | ||
new_row = min_size * row / col | ||
else: | ||
new_col = min_size * col / row | ||
im = im.resize((new_row, new_col), Image.ANTIALIAS) | ||
return im | ||
|
||
def crop_and_flip(self, im): | ||
""" | ||
Return cropped image. | ||
The size of the cropped image is inner_size * inner_size. | ||
""" | ||
row, col = im.size[:2] | ||
start_h, start_w = 0, 0 | ||
if self.is_train: | ||
start_h = np.random.randint(0, row - self.crop_size + 1) | ||
start_w = np.random.randint(0, col - self.crop_size + 1) | ||
else: | ||
start_h = (row - self.crop_size) / 2 | ||
start_w = (col - self.crop_size) / 2 | ||
end_h, end_w = start_h + self.crop_size, start_w + self.crop_size | ||
im = im.crop((start_h, start_w, end_h, end_w)) | ||
if (self.is_train) and (np.random.randint(2) == 0): | ||
im = im.transpose(Image.FLIP_LEFT_RIGHT) | ||
return im | ||
|
||
def transform(self, im): | ||
im = self.resize(im, self.min_size) | ||
im = self.crop_and_flip(im) | ||
im = np.array(im, dtype=np.float32) # convert to numpy.array | ||
# transpose, swap channel, sub mean | ||
ImageTransformer.transformer(self, im) | ||
return im | ||
|
||
def load_image_from_string(self, data): | ||
im = Image.open(StringIO(data)) | ||
return im | ||
|
||
def transform_from_string(self, data): | ||
im = self.load_image_from_string(data) | ||
return self.transform(im) | ||
|
||
def load_image_from_file(self, file): | ||
im = Image.open(file) | ||
return im | ||
|
||
def transform_from_file(self, file): | ||
im = self.load_image_from_file(file) | ||
return self.transform(im) | ||
|
||
|
||
def job(is_img_string, transformer, (data, label)): | ||
if is_img_string: | ||
return transformer.transform_from_string(data), label | ||
else: | ||
return transformer.transform_from_file(data), label | ||
|
||
|
||
class MultiProcessImageTransformer(object): | ||
def __init__(self, | ||
procnum=10, | ||
resize_size=None, | ||
crop_size=None, | ||
transpose=(2, 0, 1), | ||
channel_swap=None, | ||
mean=None, | ||
is_train=True, | ||
is_color=True, | ||
is_img_string=True): | ||
""" | ||
Processing image with multi-process. If it is used in PyDataProvider, | ||
the simple usage for CNN is as follows: | ||
.. code-block:: python | ||
def hool(settings, is_train, **kwargs): | ||
settings.is_train = is_train | ||
settings.mean_value = np.array([103.939,116.779,123.68], dtype=np.float32) | ||
settings.input_types = [ | ||
dense_vector(3 * 224 * 224), | ||
integer_value(1)] | ||
settings.transformer = MultiProcessImageTransformer( | ||
procnum=10, | ||
resize_size=256, | ||
crop_size=224, | ||
transpose=(2, 0, 1), | ||
mean=settings.mean_values, | ||
is_train=settings.is_train) | ||
@provider(init_hook=hook, pool_size=20480) | ||
def process(settings, file_list): | ||
with open(file_list, 'r') as fdata: | ||
for line in fdata: | ||
data_dic = np.load(line.strip()) # load the data batch pickled by Pickle. | ||
data = data_dic['data'] | ||
labels = data_dic['label'] | ||
labels = np.array(labels, dtype=np.float32) | ||
for im, lab in settings.dp.run(data, labels): | ||
yield [im.astype('float32'), int(lab)] | ||
:param procnum: processor number. | ||
:type procnum: int | ||
:param resize_size: the shorter edge size of image after resizing. | ||
:type resize_size: int | ||
:param crop_size: the croping size. | ||
:type crop_size: int | ||
:param transpose: the transpose order, Paddle only allow C * H * W order. | ||
:type transpose: tuple or list | ||
:param channel_swap: the channel swap order, RGB or BRG. | ||
:type channel_swap: tuple or list | ||
:param mean: the mean values of image, per-channel mean or element-wise mean. | ||
:type mean: array, The dimension is 1 for per-channel mean. | ||
The dimension is 3 for element-wise mean. | ||
:param is_train: training peroid or testing peroid. | ||
:type is_train: bool. | ||
:param is_color: the image is color or gray. | ||
:type is_color: bool. | ||
:param is_img_string: The input can be the file name of image or image string. | ||
:type is_img_string: bool. | ||
""" | ||
|
||
self.procnum = procnum | ||
self.pool = multiprocessing.Pool(procnum) | ||
self.is_img_string = is_img_string | ||
if cv2 is not None: | ||
self.transformer = CvTransformer(resize_size, crop_size, transpose, | ||
channel_swap, mean, is_train, | ||
is_color) | ||
else: | ||
self.transformer = PILTransformer(resize_size, crop_size, transpose, | ||
channel_swap, mean, is_train, | ||
is_color) | ||
|
||
def run(self, data, label): | ||
fun = functools.partial(job, self.is_img_string, self.transformer) | ||
return self.pool.imap_unordered( | ||
fun, itertools.izip(data, label), chunksize=100 * self.procnum) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters