Skip to content

Commit

Permalink
Added reshape, reshape2, squeeze and squeeze2 BF16/FP32 FWD/BWD kerne…
Browse files Browse the repository at this point in the history
…ls (#34219)

* test version of matmul_v2

* added matmul_v2 grad kernel

* minor changes

* minor changes

* minor change for CI approval

* CI fix

* CI fix

* added squeeze and squeeze2 kernels

* CI fix

* CI fix

* CI fix

* disabled tests when compiled with cuda

* added setting format_tag by strides

* added sigmoid BF16 FWD/BWD and gelu BF16 BWD

* changes after review

* Revert "added sigmoid BF16 FWD/BWD and gelu BF16 BWD"

This reverts commit 6e3f767.

* Revert "Merge branch 'matmul_v2_grad' into squeeze2_op"

This reverts commit 06fcf67, reversing
changes made to 6e3f767.

* minor change

* added reshape1/2 kernels

* moved some functions into private block

* CI fix

* CI fix

* CI fix
  • Loading branch information
jakpiase authored Jul 30, 2021
1 parent e6aacd1 commit 22c4c18
Show file tree
Hide file tree
Showing 6 changed files with 770 additions and 38 deletions.
29 changes: 9 additions & 20 deletions paddle/fluid/framework/ir/graph_pattern_detector.cc
Original file line number Diff line number Diff line change
Expand Up @@ -2262,26 +2262,15 @@ PDNode *patterns::QuantizePlacement::operator()(
PDNode *patterns::Bfloat16Placement::operator()(
const std::unordered_set<std::string> &bfloat16_enabled_op_types) {
std::unordered_set<std::string> supported_op_types =
std::unordered_set<std::string>({"concat",
"conv2d",
"conv2d_transpose",
"elementwise_add",
"elementwise_mul",
"fc",
"fusion_gru",
"fusion_lstm",
"gelu",
"layer_norm",
"matmul",
"matmul_v2",
"pool2d",
"prelu",
"relu",
"reshape2",
"softmax",
"split",
"sum",
"transpose2"});
std::unordered_set<std::string>(
{"concat", "conv2d", "conv2d_transpose",
"elementwise_add", "elementwise_mul", "fc",
"fusion_gru", "fusion_lstm", "gelu",
"layer_norm", "matmul", "matmul_v2",
"pool2d", "prelu", "relu",
"reshape2", "softmax", "split",
"squeeze", "squeeze2", "sum",
"transpose2"});
if (!bfloat16_enabled_op_types.empty()) {
supported_op_types = bfloat16_enabled_op_types;
}
Expand Down
290 changes: 290 additions & 0 deletions paddle/fluid/operators/mkldnn/reshape_mkldnn_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,290 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/squeeze_op.h"
#include "paddle/fluid/platform/mkldnn_reuse.h"

namespace paddle {
namespace operators {

using paddle::framework::LoDTensor;
using platform::to_void_cast;
using platform::GetMKLDNNFormat;

template <typename T>
class ReshapeMKLDNNKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
RunKernel(ctx);
}

private:
void RunKernel(const framework::ExecutionContext& ctx) const {
const auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

auto* x = ctx.Input<LoDTensor>("X");
auto* xshape = ctx.Output<LoDTensor>("XShape");
auto* out = ctx.Output<LoDTensor>("Out");

framework::DDim x_dims;
// if reshape or squeeze
if (ctx.Type().find("2") == std::string::npos) {
x_dims = x->dims();
} else {
auto xshape_dims = xshape->dims();
x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
}

auto x_vec_dims = framework::vectorize(x_dims);

framework::DDim out_dims;
if (ctx.Type() == "squeeze") {
auto& axes = ctx.Attr<std::vector<int>>("axes");
out_dims = GetOutputShape(axes, x_dims, true);
} else {
out_dims = out->dims();
}

if (ctx.Type().find("reshape") != std::string::npos) {
if (ctx.HasInput("Shape")) {
auto* shape_tensor = ctx.Input<framework::LoDTensor>("Shape");
auto* shape_data = shape_tensor->data<int>();

auto shape =
std::vector<int>(shape_data, shape_data + shape_tensor->numel());
out_dims = ValidateShape(shape, x_dims);
}
}

mkldnn::memory::data_type x_type = framework::ToMKLDNNDataType(x->type());
std::string key =
platform::CreateKey(dev_ctx, x_vec_dims, x->format(), x_type);
platform::ReorderMKLDNNHandler reorder_handler(
x_vec_dims, x->type(), x_type, dev_ctx, onednn_engine, key);

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
x->format(), platform::to_void_cast(x->data<T>()));
out->Resize(x_dims); // to match x numel, format is changed later
// reorder is done into a plain tag to allow usage with blocked formats
auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
out, getPlainFormatTag(x), ctx.GetPlace());
auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
reorder_dst_memory_p);

auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);

astream.wait();

out->Resize(out_dims);
out->set_layout(framework::DataLayout::kMKLDNN);
out->set_format(GetMKLDNNFormat(reorder_dst_memory_p->get_desc().reshape(
framework::vectorize(out_dims))));
}

protected:
static mkldnn::memory::format_tag getPlainFormatTag(const Tensor* tensor) {
auto tensor_dims_size = tensor->dims().size();
PADDLE_ENFORCE_EQ(
tensor_dims_size <= 6 && tensor_dims_size >= 1, true,
platform::errors::InvalidArgument(
"Dims for squeeze_grad oneDNN op must be in range <1, 6>"));

switch (tensor_dims_size) {
case 1:
return mkldnn::memory::format_tag::a;
case 2:
return mkldnn::memory::format_tag::ab;
case 3:
return mkldnn::memory::format_tag::abc;
case 4:
return mkldnn::memory::format_tag::abcd;
case 5:
return mkldnn::memory::format_tag::abcde;
default:
return mkldnn::memory::format_tag::abcdef;
}
}

static framework::DDim ValidateShape(const std::vector<int>& shape,
const framework::DDim& in_dims) {
const int64_t in_size = framework::product(in_dims);
auto in_dims_vec = framework::vectorize(in_dims);
bool all_positive = std::all_of(in_dims_vec.cbegin(), in_dims_vec.cend(),
[](int64_t i) { return i > 0; });
// only one dimension can be set to -1, whose size will be automatically
// infered
const int64_t unk_dim_val = -1;
const int64_t copy_dim_val = 0;

std::vector<int64_t> output_shape(shape.size(), 0);
int64_t capacity = 1;
int unk_dim_idx = -1;
for (size_t i = 0; i < shape.size(); ++i) {
if (shape[i] == unk_dim_val) {
PADDLE_ENFORCE_EQ(
unk_dim_idx, -1,
platform::errors::InvalidArgument(
"Only one dimension value of 'shape' in ReshapeOp can "
"be -1. But received shape = [%s], shape[%d] is also -1.",
framework::make_ddim(shape), i));
unk_dim_idx = i;
} else if (shape[i] == copy_dim_val) {
PADDLE_ENFORCE_LT(
static_cast<int>(i), in_dims.size(),
platform::errors::InvalidArgument(
"The index of 0 in `shape` must be less than "
"the input tensor X's dimensions. "
"But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
"X's dimensions = %d.",
framework::make_ddim(shape), i, in_dims, in_dims.size()));
} else {
PADDLE_ENFORCE_GT(
shape[i], 0,
platform::errors::InvalidArgument(
"Each dimension value of 'shape' in ReshapeOp must not "
"be negative except one unknown dimension. "
"But received shape = [%s], shape[%d] = %d.",
framework::make_ddim(shape), i, shape[i]));
}

capacity *= (shape[i] ? shape[i] : in_dims[i]);
output_shape[i] =
(shape[i] ? static_cast<int64_t>(shape[i]) : in_dims[i]);
}

if (unk_dim_idx != -1) {
if (all_positive) {
// in_size < 0 and is un-determinate in compile time, skip the check,
// for example, in_dims = [-1, 8, 1, 1], shape = [-1, 3, 8],
// capacity = -24, in_size = -8, output_shape[0] = 0
// the following check will fail.
output_shape[unk_dim_idx] = -in_size / capacity;
PADDLE_ENFORCE_EQ(
output_shape[unk_dim_idx] * capacity, -in_size,
platform::errors::InvalidArgument(
"The 'shape' attribute in ReshapeOp is invalid. "
"The input tensor X'size must be divisible by known "
"capacity of 'shape'. "
"But received X's shape = [%s], X's size = %d, "
"'shape' is [%s], known capacity of 'shape' is %d.",
in_dims, in_size, framework::make_ddim(shape), capacity));
} else {
output_shape[unk_dim_idx] = -1;
}
} else {
if (all_positive) {
PADDLE_ENFORCE_EQ(
capacity, in_size,
platform::errors::InvalidArgument(
"The 'shape' in ReshapeOp is invalid. "
"The input tensor X'size must be equal to the capacity of "
"'shape'. "
"But received X's shape = [%s], X's size = %d, 'shape' is "
"[%s], the capacity of 'shape' is %d.",
in_dims, in_size, framework::make_ddim(shape), capacity));
}
}
return framework::make_ddim(output_shape);
}
};

template <typename T>
class ReshapeGradMKLDNNKernel : public ReshapeMKLDNNKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
RunKernel(ctx);
}

private:
void RunKernel(const framework::ExecutionContext& ctx) const {
const auto& dev_ctx =
ctx.template device_context<platform::MKLDNNDeviceContext>();
const auto& onednn_engine = dev_ctx.GetEngine();

auto* dout = ctx.Input<LoDTensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<LoDTensor>(framework::GradVarName("X"));

framework::DDim x_dims;
// if reshape or squeeze
if (ctx.Type().find("2") == std::string::npos) {
x_dims = dx->dims();
} else {
auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
}
auto dout_vec_dims = framework::vectorize(dout->dims());

mkldnn::memory::data_type dout_type =
framework::ToMKLDNNDataType(dout->type());
std::string key =
platform::CreateKey(dev_ctx, dout_vec_dims, this->getPlainFormatTag(dx),
dx->format(), dout_type);
platform::ReorderMKLDNNHandler reorder_handler(
dout_vec_dims, dout->type(), dout_type, dev_ctx, onednn_engine, key);

auto reorder_src_memory_p = reorder_handler.AcquireSrcMemory(
dout->format(), platform::to_void_cast(dout->data<T>()));
auto reorder_dst_memory_p = reorder_handler.AcquireDstMemory(
dx, this->getPlainFormatTag(dout), ctx.GetPlace());
auto reorder_p = reorder_handler.AcquireReorder(reorder_src_memory_p,
reorder_dst_memory_p);

auto& astream = platform::MKLDNNDeviceContext::tls().get_stream();
reorder_p->execute(astream, *reorder_src_memory_p, *reorder_dst_memory_p);
astream.wait();

dx->Resize(x_dims);
dx->set_layout(framework::DataLayout::kMKLDNN);
dx->set_format(GetMKLDNNFormat(reorder_dst_memory_p->get_desc().reshape(
framework::vectorize(x_dims))));
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_KERNEL(squeeze, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeMKLDNNKernel<float>,
ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(squeeze_grad, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeGradMKLDNNKernel<float>,
ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(squeeze2, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeMKLDNNKernel<float>,
ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(squeeze2_grad, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeGradMKLDNNKernel<float>,
ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(reshape, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeMKLDNNKernel<float>,
ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(reshape_grad, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeGradMKLDNNKernel<float>,
ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(reshape2, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeMKLDNNKernel<float>,
ops::ReshapeMKLDNNKernel<paddle::platform::bfloat16>);

REGISTER_OP_KERNEL(reshape2_grad, MKLDNN, paddle::platform::CPUPlace,
ops::ReshapeGradMKLDNNKernel<float>,
ops::ReshapeGradMKLDNNKernel<paddle::platform::bfloat16>);
45 changes: 36 additions & 9 deletions paddle/fluid/operators/reshape_op.cc
Original file line number Diff line number Diff line change
Expand Up @@ -228,9 +228,17 @@ class ReshapeOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}

framework::OpKernelType GetKernelTypeForVar(
Expand Down Expand Up @@ -269,6 +277,9 @@ class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker {
"It has the lowest priority compare with Input(Shape) and "
" Input(ShapeTensor).")
.SetDefault({});
AddAttr<bool>("use_mkldnn",
"(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddComment(R"DOC(
Reshape Operator.
Expand Down Expand Up @@ -334,9 +345,17 @@ class ReshapeGradOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
auto input_data_type =
framework::OperatorWithKernel::IndicateVarDataType(ctx, "X");

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};

Expand Down Expand Up @@ -517,9 +536,17 @@ class Reshape2GradOp : public framework::OperatorWithKernel {
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out")),
ctx.device_context());
auto input_data_type = framework::OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Out"));

#ifdef PADDLE_WITH_MKLDNN
if (this->CanMKLDNNBeUsed(ctx, input_data_type)) {
return framework::OpKernelType(input_data_type, ctx.GetPlace(),
framework::DataLayout::kMKLDNN,
framework::LibraryType::kMKLDNN);
}
#endif
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}

framework::OpKernelType GetKernelTypeForVar(
Expand Down
Loading

0 comments on commit 22c4c18

Please sign in to comment.