-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added PRelu BF16/FP32 FWD/BWD kernels (#33878)
* added prelu bf16/fp32 fwd/bwd kernel
- Loading branch information
Showing
6 changed files
with
433 additions
and
12 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,187 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/platform/mkldnn_reuse.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using dnnl::memory; | ||
using framework::Tensor; | ||
using platform::GetMKLDNNFormat; | ||
using platform::MKLDNNDeviceContext; | ||
using platform::MKLDNNGetDataType; | ||
using platform::to_void_cast; | ||
|
||
namespace { | ||
template <typename T> | ||
class PReluMKLDNNHandler | ||
: public platform::MKLDNNHandlerT<T, dnnl::prelu_forward, | ||
dnnl::prelu_backward> { | ||
public: | ||
PReluMKLDNNHandler(const MKLDNNDeviceContext& dev_ctx, | ||
const mkldnn::engine engine, platform::Place cpu_place, | ||
const Tensor* x, const Tensor* weights, | ||
const std::string& uniq_name, const std::string& mode, | ||
bool is_test = false) | ||
: platform::MKLDNNHandlerT<T, dnnl::prelu_forward, dnnl::prelu_backward>( | ||
dev_ctx, engine, cpu_place, | ||
platform::CreateKey(dev_ctx, framework::vectorize(x->dims()), | ||
uniq_name)) { | ||
if (!this->isCached()) { | ||
auto x_md = memory::desc(framework::vectorize(x->dims()), | ||
MKLDNNGetDataType<T>(), x->format()); | ||
|
||
auto weights_dims = framework::vectorize(weights->dims()); | ||
|
||
// weights must have same size as X only for "element" case | ||
if (weights->dims().size() != x->dims().size()) { | ||
auto new_weights_dims = std::vector<int64_t>(x->dims().size(), 1); | ||
if (mode == "channel") { | ||
new_weights_dims[1] = | ||
*std::max_element(weights_dims.begin(), weights_dims.end()); | ||
} | ||
weights_dims = std::move(new_weights_dims); | ||
} | ||
auto weights_md = memory::desc(weights_dims, MKLDNNGetDataType<T>(), | ||
memory::format_tag::any); | ||
|
||
this->AcquireForwardPrimitiveDescriptor(dnnl::prop_kind::forward_training, | ||
x_md, weights_md); | ||
if (!is_test) | ||
this->AcquireBackwardPrimitiveDescriptor(x_md, weights_md, x_md, | ||
weights_md); | ||
} | ||
} | ||
|
||
std::shared_ptr<memory> AcquireWeightsMemoryPossiblyWithReorder( | ||
const Tensor* input, const bool is_test) { | ||
const T* input_data = input->data<T>(); | ||
|
||
// if weights are 1D, every format tag is correct, so we accept | ||
// format_tag::any's output and no reorder is needed | ||
if (input->dims().size() == 1) { | ||
return this->AcquireMemoryFromPrimitive(this->fwd_pd_->weights_desc(), | ||
to_void_cast<T>(input_data), | ||
"@alpha_mem_p"); | ||
} | ||
|
||
auto user_weights_md = | ||
memory::desc(framework::vectorize(input->dims()), | ||
MKLDNNGetDataType<T>(), input->format()); | ||
return this->AcquireMemoryWithReorder( | ||
user_weights_md, this->fwd_pd_->weights_desc(), | ||
to_void_cast<T>(input_data), "@alpha_mem_p", is_test); | ||
} | ||
|
||
std::shared_ptr<memory> AcquireDiffWeightsMemory(Tensor* output) { | ||
T* output_data = output->mutable_data<T>( | ||
this->place_, this->bwd_pd_->diff_weights_desc().get_size()); | ||
return this->AcquireMemoryFromPrimitive(this->bwd_pd_->diff_weights_desc(), | ||
output_data, "@diff_weights_mem_p"); | ||
} | ||
}; | ||
} // anonymous namespace | ||
|
||
template <typename T> | ||
class PReluMKLDNNKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
this->RunKernel(ctx); | ||
} | ||
|
||
void RunKernel(const framework::ExecutionContext& ctx) const { | ||
const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); | ||
const auto& onednn_engine = dev_ctx.GetEngine(); | ||
|
||
const auto* x = ctx.Input<Tensor>("X"); | ||
const auto* alpha = ctx.Input<Tensor>("Alpha"); | ||
auto* out = ctx.Output<Tensor>("Out"); | ||
const bool is_test = ctx.Attr<bool>("is_test"); | ||
const auto mode = ctx.Attr<std::string>("mode"); | ||
|
||
PReluMKLDNNHandler<T> handler(dev_ctx, onednn_engine, ctx.GetPlace(), x, | ||
alpha, ctx.InputName("X"), mode, is_test); | ||
|
||
auto src_memory_p = handler.AcquireSrcMemory(x); | ||
auto weights_memory_p = | ||
handler.AcquireWeightsMemoryPossiblyWithReorder(alpha, is_test); | ||
auto dst_memory_p = handler.AcquireDstMemory(out); | ||
auto prelu_p = handler.AcquireForwardPrimitive(); | ||
|
||
auto& astream = MKLDNNDeviceContext::tls().get_stream(); | ||
prelu_p->execute(astream, {{DNNL_ARG_SRC, *src_memory_p}, | ||
{DNNL_ARG_WEIGHTS, *weights_memory_p}, | ||
{DNNL_ARG_DST, *dst_memory_p}}); | ||
astream.wait(); | ||
|
||
out->set_layout(framework::DataLayout::kMKLDNN); | ||
out->set_format(GetMKLDNNFormat(*dst_memory_p)); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class PReluGradMKLDNNKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
this->RunKernel(ctx); | ||
} | ||
|
||
void RunKernel(const framework::ExecutionContext& ctx) const { | ||
const auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>(); | ||
const auto& onednn_engine = dev_ctx.GetEngine(); | ||
|
||
auto* x = ctx.Input<Tensor>("X"); | ||
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out")); | ||
auto* dalpha = ctx.Output<Tensor>(framework::GradVarName("Alpha")); | ||
auto* alpha = ctx.Input<Tensor>("Alpha"); | ||
const bool is_test = ctx.Attr<bool>("is_test"); | ||
const auto mode = ctx.Attr<std::string>("mode"); | ||
|
||
PReluMKLDNNHandler<T> handler(dev_ctx, onednn_engine, ctx.GetPlace(), x, | ||
alpha, framework::GradVarName("X"), mode); | ||
|
||
auto src_memory_p = handler.AcquireSrcMemory(x); | ||
auto weights_memory_p = | ||
handler.AcquireWeightsMemoryPossiblyWithReorder(alpha, is_test); | ||
auto diff_src_memory_p = handler.AcquireDiffSrcMemory(dx); | ||
auto diff_weights_memory_p = handler.AcquireDiffWeightsMemory(dalpha); | ||
auto diff_dst_memory_p = handler.AcquireDiffDstMemory(dout); | ||
auto prelu_p = handler.AcquireBackwardPrimitive(); | ||
|
||
auto& astream = MKLDNNDeviceContext::tls().get_stream(); | ||
prelu_p->execute(astream, | ||
{{DNNL_ARG_SRC, *src_memory_p}, | ||
{DNNL_ARG_WEIGHTS, *weights_memory_p}, | ||
{DNNL_ARG_DIFF_DST, *diff_dst_memory_p}, | ||
{DNNL_ARG_DIFF_SRC, *diff_src_memory_p}, | ||
{DNNL_ARG_DIFF_WEIGHTS, *diff_weights_memory_p}}); | ||
astream.wait(); | ||
|
||
dx->set_layout(framework::DataLayout::kMKLDNN); | ||
dx->set_format(GetMKLDNNFormat(*diff_src_memory_p)); | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_KERNEL(prelu, MKLDNN, paddle::platform::CPUPlace, | ||
ops::PReluMKLDNNKernel<float>, | ||
ops::PReluMKLDNNKernel<paddle::platform::bfloat16>); | ||
|
||
REGISTER_OP_KERNEL(prelu_grad, MKLDNN, paddle::platform::CPUPlace, | ||
ops::PReluGradMKLDNNKernel<float>, | ||
ops::PReluGradMKLDNNKernel<paddle::platform::bfloat16>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.