Skip to content

Commit

Permalink
[PaddlePaddle hackathon] Add randint_like (#36169)
Browse files Browse the repository at this point in the history
* add randint like

* rm .cc .cu

* Update unity_build_rule.cmake

* try to make test pass

* use python

* update

* update randint_like

* rename test_randint_like_op -> test_randint_like

* update

* update randint like docs

* update randint like

* update

* update

* add bool

* update randint like test

* update

* update
  • Loading branch information
JunnYu authored Nov 2, 2021
1 parent e4a134a commit 41a0911
Show file tree
Hide file tree
Showing 5 changed files with 404 additions and 5 deletions.
2 changes: 2 additions & 0 deletions python/paddle/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -230,6 +230,7 @@
from .tensor.random import randn # noqa: F401
from .tensor.random import rand # noqa: F401
from .tensor.random import randint # noqa: F401
from .tensor.random import randint_like # noqa: F401
from .tensor.random import randperm # noqa: F401
from .tensor.search import argmax # noqa: F401
from .tensor.search import argmin # noqa: F401
Expand Down Expand Up @@ -376,6 +377,7 @@
'ParamAttr',
'stanh',
'randint',
'randint_like',
'assign',
'gather',
'scale',
Expand Down
221 changes: 221 additions & 0 deletions python/paddle/fluid/tests/unittests/test_randint_like.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,221 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import unittest
import numpy as np
import paddle
from paddle.static import program_guard, Program


# Test python API
class TestRandintLikeAPI(unittest.TestCase):
def setUp(self):
self.x_bool = np.zeros((10, 12)).astype("bool")
self.x_int32 = np.zeros((10, 12)).astype("int32")
self.x_int64 = np.zeros((10, 12)).astype("int64")
self.x_float16 = np.zeros((10, 12)).astype("float16")
self.x_float32 = np.zeros((10, 12)).astype("float32")
self.x_float64 = np.zeros((10, 12)).astype("float64")

self.dtype = ["bool", "int32", "int64", "float16", "float32", "float64"]
self.place=paddle.CUDAPlace(0) if paddle.is_compiled_with_cuda() \
else paddle.CPUPlace()

def test_static_api(self):
paddle.enable_static()
with program_guard(Program(), Program()):
# results are from [-100, 100).
x_bool = paddle.fluid.data(
name="x_bool", shape=[10, 12], dtype="bool")
x_int32 = paddle.fluid.data(
name="x_int32", shape=[10, 12], dtype="int32")
x_int64 = paddle.fluid.data(
name="x_int64", shape=[10, 12], dtype="int64")
x_float16 = paddle.fluid.data(
name="x_float16", shape=[10, 12], dtype="float16")
x_float32 = paddle.fluid.data(
name="x_float32", shape=[10, 12], dtype="float32")
x_float64 = paddle.fluid.data(
name="x_float64", shape=[10, 12], dtype="float64")

exe = paddle.static.Executor(self.place)

# x dtype is bool output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"]
outlist1 = [
paddle.randint_like(
x_bool, low=-10, high=10, dtype=dtype)
for dtype in self.dtype
]
outs1 = exe.run(feed={'x_bool': self.x_bool}, fetch_list=outlist1)
for out, dtype in zip(outs1, self.dtype):
self.assertTrue(out.dtype, np.dtype(dtype))
self.assertTrue(((out >= -10) & (out <= 10)).all(), True)

# x dtype is int32 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"]
outlist2 = [
paddle.randint_like(
x_int32, low=-5, high=10, dtype=dtype)
for dtype in self.dtype
]
outs2 = exe.run(feed={'x_int32': self.x_int32}, fetch_list=outlist2)
for out, dtype in zip(outs2, self.dtype):
self.assertTrue(out.dtype, np.dtype(dtype))
self.assertTrue(((out >= -5) & (out <= 10)).all(), True)

# x dtype is int64 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"]
outlist3 = [
paddle.randint_like(
x_int64, low=-100, high=100, dtype=dtype)
for dtype in self.dtype
]
outs3 = exe.run(feed={'x_int64': self.x_int64}, fetch_list=outlist3)
for out, dtype in zip(outs3, self.dtype):
self.assertTrue(out.dtype, np.dtype(dtype))
self.assertTrue(((out >= -100) & (out <= 100)).all(), True)

# x dtype is float16 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"]
outlist4 = [
paddle.randint_like(
x_float16, low=-3, high=25, dtype=dtype)
for dtype in self.dtype
]
outs4 = exe.run(feed={'x_float16': self.x_float16},
fetch_list=outlist4)
for out, dtype in zip(outs4, self.dtype):
self.assertTrue(out.dtype, np.dtype(dtype))
self.assertTrue(((out >= -3) & (out <= 25)).all(), True)

# x dtype is float32 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"]
outlist5 = [
paddle.randint_like(
x_float32, low=-25, high=25, dtype=dtype)
for dtype in self.dtype
]
outs5 = exe.run(feed={'x_float32': self.x_float32},
fetch_list=outlist5)
for out, dtype in zip(outs5, self.dtype):
self.assertTrue(out.dtype, np.dtype(dtype))
self.assertTrue(((out >= -25) & (out <= 25)).all(), True)

# x dtype is float64 output dtype in ["bool", "int32", "int64", "float16", "float32", "float64"]
outlist6 = [
paddle.randint_like(
x_float64, low=-16, high=16, dtype=dtype)
for dtype in self.dtype
]
outs6 = exe.run(feed={'x_float64': self.x_float64},
fetch_list=outlist6)
for out, dtype in zip(outs6, self.dtype):
self.assertTrue(out.dtype, dtype)
self.assertTrue(((out >= -16) & (out <= 16)).all(), True)

def test_dygraph_api(self):
paddle.disable_static(self.place)
# x dtype ["bool", "int32", "int64", "float16", "float32", "float64"]
for x in [
self.x_bool, self.x_int32, self.x_int64, self.x_float16,
self.x_float32, self.x_float64
]:
x_inputs = paddle.to_tensor(x)
# self.dtype ["bool", "int32", "int64", "float16", "float32", "float64"]
for dtype in self.dtype:
out = paddle.randint_like(
x_inputs, low=-100, high=100, dtype=dtype)
self.assertTrue(out.numpy().dtype, np.dtype(dtype))
self.assertTrue(((out.numpy() >= -100) &
(out.numpy() <= 100)).all(), True)

paddle.enable_static()

def test_errors(self):
paddle.enable_static()
with program_guard(Program(), Program()):
x_bool = paddle.fluid.data(
name="x_bool", shape=[10, 12], dtype="bool")
x_int32 = paddle.fluid.data(
name="x_int32", shape=[10, 12], dtype="int32")
x_int64 = paddle.fluid.data(
name="x_int64", shape=[10, 12], dtype="int64")
x_float16 = paddle.fluid.data(
name="x_float16", shape=[10, 12], dtype="float16")
x_float32 = paddle.fluid.data(
name="x_float32", shape=[10, 12], dtype="float32")
x_float64 = paddle.fluid.data(
name="x_float64", shape=[10, 12], dtype="float64")

# x dtype is bool
# low is 5 and high is 5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_bool, low=5, high=5)
# low(default value) is 0 and high is -5, low must less then high
self.assertRaises(ValueError, paddle.randint_like, x_bool, high=-5)
# if high is None, low must be greater than 0
self.assertRaises(ValueError, paddle.randint_like, x_bool, low=-5)

# x dtype is int32
# low is 5 and high is 5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_int32, low=5, high=5)
# low(default value) is 0 and high is -5, low must less then high
self.assertRaises(ValueError, paddle.randint_like, x_int32, high=-5)
# if high is None, low must be greater than 0
self.assertRaises(ValueError, paddle.randint_like, x_int32, low=-5)

# x dtype is int64
# low is 5 and high is 5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_int64, low=5, high=5)
# low(default value) is 0 and high is -5, low must less then high
self.assertRaises(ValueError, paddle.randint_like, x_int64, high=-5)
# if high is None, low must be greater than 0
self.assertRaises(ValueError, paddle.randint_like, x_int64, low=-5)

# x dtype is float16
# low is 5 and high is 5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_float16, low=5, high=5)
# low(default value) is 0 and high is -5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_float16, high=-5)
# if high is None, low must be greater than 0
self.assertRaises(
ValueError, paddle.randint_like, x_float16, low=-5)

# x dtype is float32
# low is 5 and high is 5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_float32, low=5, high=5)
# low(default value) is 0 and high is -5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_float32, high=-5)
# if high is None, low must be greater than 0
self.assertRaises(
ValueError, paddle.randint_like, x_float32, low=-5)

# x dtype is float64
# low is 5 and high is 5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_float64, low=5, high=5)
# low(default value) is 0 and high is -5, low must less then high
self.assertRaises(
ValueError, paddle.randint_like, x_float64, high=-5)
# if high is None, low must be greater than 0
self.assertRaises(
ValueError, paddle.randint_like, x_float64, low=-5)


if __name__ == "__main__":
unittest.main()
1 change: 1 addition & 0 deletions python/paddle/tensor/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,6 +197,7 @@
from .random import randn # noqa: F401
from .random import rand # noqa: F401
from .random import randint # noqa: F401
from .random import randint_like # noqa: F401
from .random import randperm # noqa: F401
from .search import argmax # noqa: F401
from .search import argmin # noqa: F401
Expand Down
Loading

0 comments on commit 41a0911

Please sign in to comment.