-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
LGTM
- Loading branch information
Showing
7 changed files
with
973 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/lu_op.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class LUOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddComment(R"DOC(LU decomposition, | ||
Computes the LU factorization of a matrix or batches of matrices A. | ||
)DOC"); | ||
AddInput("X", "(Tensor) The input tensor, shape of (*,m,n)"); | ||
AddOutput("Out", "(Tensor) The output tensor, shape same to X"); | ||
AddOutput("Pivots", | ||
"Stores all the intermediate transpositions of rows. shape of " | ||
"(*,min(m,n))"); | ||
AddOutput("Infos", | ||
"(Tensor) This is a tensor of size (*) where non-zero values " | ||
"indicate whether factorization for the matrix has succeeded"); | ||
AddAttr<bool>("pivots", "Whether pivoting is done").SetDefault(true); | ||
} | ||
}; | ||
|
||
class LUOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext *context) const override { | ||
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "LU"); | ||
OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "LU"); | ||
bool pivots = context->Attrs().Get<bool>("pivots"); | ||
auto x_dims = context->GetInputDim("X"); | ||
int x_rank = x_dims.size(); | ||
PADDLE_ENFORCE_GE(x_rank, 2, platform::errors::InvalidArgument( | ||
"the rank of input must greater than 2")); | ||
context->SetOutputDim("Out", x_dims); | ||
int m = x_dims[x_rank - 1]; | ||
int n = x_dims[x_rank - 2]; | ||
int min_mn = std::min(m, n); | ||
auto dims_vec = framework::vectorize(x_dims); | ||
OP_INOUT_CHECK(context->HasOutput("Infos"), "Output", "Infos", "LU"); | ||
if (x_rank == 2) { | ||
auto Infos_dim = std::vector<int>(1); | ||
context->SetOutputDim("Infos", framework::make_ddim(Infos_dim)); | ||
} else { | ||
auto Infos_dim = | ||
std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 2); | ||
context->SetOutputDim("Infos", framework::make_ddim(Infos_dim)); | ||
} | ||
if (pivots) { | ||
OP_INOUT_CHECK(context->HasOutput("Pivots"), "Output", "Pivots", "LU"); | ||
auto Pivots_dim = | ||
std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 1); | ||
Pivots_dim[x_rank - 2] = min_mn; | ||
context->SetOutputDim("Pivots", framework::make_ddim(Pivots_dim)); | ||
} | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext &ctx) const override { | ||
return framework::OpKernelType( | ||
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace()); | ||
} | ||
}; | ||
|
||
class LUOpVarTypeInference : public framework::VarTypeInference { | ||
public: | ||
void operator()(framework::InferVarTypeContext *ctx) const override { | ||
auto var_type = ctx->GetInputType("X", 0); | ||
auto data_type = ctx->GetInputDataType("X", 0); | ||
|
||
ctx->SetOutputType("Out", var_type, framework::ALL_ELEMENTS); | ||
ctx->SetOutputDataType("Out", data_type, framework::ALL_ELEMENTS); | ||
|
||
ctx->SetOutputType("Pivots", var_type, framework::ALL_ELEMENTS); | ||
ctx->SetOutputDataType("Pivots", framework::proto::VarType::INT32, | ||
framework::ALL_ELEMENTS); | ||
|
||
ctx->SetOutputType("Infos", var_type, framework::ALL_ELEMENTS); | ||
ctx->SetOutputDataType("Infos", framework::proto::VarType::INT32, | ||
framework::ALL_ELEMENTS); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class LUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const paddle::framework::ExecutionContext &ctx) const override { | ||
auto pivots = ctx.Attr<bool>("pivots"); | ||
auto *xin = ctx.Input<framework::Tensor>("X"); | ||
auto *out = ctx.Output<framework::Tensor>("Out"); | ||
auto *IpivT = ctx.Output<framework::Tensor>("Pivots"); | ||
auto *InfoT = ctx.Output<framework::Tensor>("Infos"); | ||
PADDLE_ENFORCE_EQ(pivots, true, | ||
platform::errors::InvalidArgument( | ||
"lu without pivoting is not implemented on the CPU, " | ||
"but got pivots=False")); | ||
|
||
math::DeviceIndependenceTensorOperations<paddle::platform::CPUDeviceContext, | ||
T> | ||
helper(ctx); | ||
*out = helper.Transpose(*xin); | ||
|
||
auto outdims = out->dims(); | ||
auto outrank = outdims.size(); | ||
|
||
int m = static_cast<int>(outdims[outrank - 1]); | ||
int n = static_cast<int>(outdims[outrank - 2]); | ||
int lda = std::max(1, m); | ||
|
||
auto ipiv_dims = slice_ddim(outdims, 0, outrank - 1); | ||
ipiv_dims[outrank - 2] = std::min(m, n); | ||
IpivT->Resize(ipiv_dims); | ||
auto ipiv_data = IpivT->mutable_data<int>(ctx.GetPlace()); | ||
|
||
auto info_dims = slice_ddim(outdims, 0, outrank - 2); | ||
if (info_dims.size() == 0) { | ||
info_dims = framework::make_ddim({1}); | ||
} | ||
InfoT->Resize(info_dims); | ||
auto info_data = InfoT->mutable_data<int>(ctx.GetPlace()); | ||
|
||
auto batchsize = product(info_dims); | ||
batchsize = std::max(static_cast<int>(batchsize), 1); | ||
auto out_data = out->mutable_data<T>(ctx.GetPlace()); | ||
for (int b = 0; b < batchsize; b++) { | ||
auto out_data_item = &out_data[b * m * n]; | ||
int *info_data_item = &info_data[b]; | ||
int *ipiv_data_item = &ipiv_data[b * std::min(m, n)]; | ||
math::lapackLu<T>(m, n, out_data_item, lda, ipiv_data_item, | ||
info_data_item); | ||
} | ||
*out = helper.Transpose(*out); | ||
} | ||
}; | ||
|
||
DECLARE_INPLACE_OP_INFERER(LUOpInplaceInferer, {"X", "Out"}); | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
|
||
REGISTER_OPERATOR(lu, ops::LUOp, ops::LUOpMaker, ops::LUOpVarTypeInference, | ||
ops::LUOpInplaceInferer); | ||
|
||
REGISTER_OP_CPU_KERNEL(lu, ops::LUKernel<float>, ops::LUKernel<double>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,156 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#ifndef PADDLE_WITH_HIP | ||
// HIP not support cusolver | ||
|
||
#include "paddle/fluid/memory/memory.h" | ||
#include "paddle/fluid/operators/lu_op.h" | ||
#include "paddle/fluid/platform/dynload/cusolver.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
using CUDADeviceContext = paddle::platform::CUDADeviceContext; | ||
|
||
template <typename T> | ||
void cusolver_bufferSize(const cusolverDnHandle_t& cusolverH, int m, int n, | ||
T* d_A, int lda, int* lwork); | ||
template <typename T> | ||
void cusolver_getrf(const cusolverDnHandle_t& cusolverH, int m, int n, T* d_A, | ||
int lda, T* d_work, int* d_Ipiv, int* d_info); | ||
|
||
template <> | ||
void cusolver_bufferSize<float>(const cusolverDnHandle_t& cusolverH, int m, | ||
int n, float* d_A, int lda, int* lwork) { | ||
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSgetrf_bufferSize( | ||
cusolverH, m, n, d_A, lda, lwork)); | ||
} | ||
|
||
template <> | ||
void cusolver_bufferSize<double>(const cusolverDnHandle_t& cusolverH, int m, | ||
int n, double* d_A, int lda, int* lwork) { | ||
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDgetrf_bufferSize( | ||
cusolverH, m, n, d_A, lda, lwork)); | ||
} | ||
|
||
template <> | ||
void cusolver_getrf<float>(const cusolverDnHandle_t& cusolverH, int m, int n, | ||
float* d_A, int lda, float* d_work, int* d_Ipiv, | ||
int* d_info) { | ||
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSgetrf( | ||
cusolverH, m, n, d_A, lda, d_work, d_Ipiv, d_info)); | ||
} | ||
|
||
template <> | ||
void cusolver_getrf<double>(const cusolverDnHandle_t& cusolverH, int m, int n, | ||
double* d_A, int lda, double* d_work, int* d_Ipiv, | ||
int* d_info) { | ||
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDgetrf( | ||
cusolverH, m, n, d_A, lda, d_work, d_Ipiv, d_info)); | ||
} | ||
|
||
template <typename T> | ||
void lu_decomposed_kernel(int m, int n, T* d_A, int lda, int* d_Ipiv, | ||
int* d_info, const framework::ExecutionContext& ctx) { | ||
/* step 1: get cusolver handle*/ | ||
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>(); | ||
auto cusolverH = dev_ctx.cusolver_dn_handle(); | ||
|
||
/* step 2: query working space of getrf */ | ||
int lwork; | ||
cusolver_bufferSize(cusolverH, m, n, d_A, lda, &lwork); | ||
|
||
auto work_buff = memory::Alloc(dev_ctx, lwork * sizeof(T)); | ||
T* d_work = reinterpret_cast<T*>(work_buff->ptr()); | ||
|
||
/* step 3: LU factorization */ | ||
if (d_Ipiv) { | ||
cusolver_getrf(cusolverH, m, n, d_A, lda, d_work, d_Ipiv, d_info); | ||
} else { | ||
cusolver_getrf(cusolverH, m, n, d_A, lda, d_work, NULL, d_info); | ||
} | ||
PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize()); | ||
} | ||
|
||
template <typename T> | ||
class LUCUDAKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
#ifdef __HIPCC__ | ||
const int64_t kMaxBlockDim = 256; | ||
#else | ||
const int64_t kMaxBlockDim = 512; | ||
#endif | ||
auto* xin = ctx.Input<framework::Tensor>("X"); | ||
auto* out = ctx.Output<framework::Tensor>("Out"); | ||
auto* IpivT = ctx.Output<framework::Tensor>("Pivots"); | ||
auto* InfoT = ctx.Output<framework::Tensor>("Infos"); | ||
auto pivots = ctx.Attr<bool>("pivots"); | ||
|
||
math::DeviceIndependenceTensorOperations< | ||
paddle::platform::CUDADeviceContext, T> | ||
helper(ctx); | ||
*out = helper.Transpose(*xin); | ||
|
||
auto outdims = out->dims(); | ||
auto outrank = outdims.size(); | ||
|
||
int m = static_cast<int>(outdims[outrank - 1]); | ||
int n = static_cast<int>(outdims[outrank - 2]); | ||
int lda = std::max(1, m); | ||
if (pivots) { | ||
auto ipiv_dims = slice_ddim(outdims, 0, outrank - 1); | ||
ipiv_dims[outrank - 2] = std::min(m, n); | ||
IpivT->Resize(ipiv_dims); | ||
} | ||
auto ipiv_data = IpivT->mutable_data<int>(ctx.GetPlace()); | ||
|
||
auto info_dims = slice_ddim(outdims, 0, outrank - 2); | ||
if (info_dims.size() == 0) { | ||
info_dims = framework::make_ddim({1}); | ||
} | ||
InfoT->Resize(info_dims); | ||
auto info_data = InfoT->mutable_data<int>(ctx.GetPlace()); | ||
|
||
auto batchsize = product(info_dims); | ||
batchsize = std::max(static_cast<int>(batchsize), 1); | ||
auto out_data = out->mutable_data<T>(ctx.GetPlace()); | ||
for (int b = 0; b < batchsize; b++) { | ||
auto out_data_item = &out_data[b * m * n]; | ||
int* info_data_item = &info_data[b]; | ||
if (pivots) { | ||
auto ipiv_data_item = &ipiv_data[b * std::min(m, n)]; | ||
lu_decomposed_kernel(m, n, out_data_item, lda, ipiv_data_item, | ||
info_data_item, ctx); | ||
} else { | ||
lu_decomposed_kernel(m, n, out_data_item, lda, NULL, info_data_item, | ||
ctx); | ||
} | ||
} | ||
*out = helper.Transpose(*out); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
|
||
REGISTER_OP_CUDA_KERNEL(lu, ops::LUCUDAKernel<float>, | ||
ops::LUCUDAKernel<double>); | ||
|
||
#endif // not PADDLE_WITH_HIP |
Oops, something went wrong.