Skip to content

Commit

Permalink
add OP lu forward (#38559)
Browse files Browse the repository at this point in the history
LGTM
  • Loading branch information
zhiboniu authored Dec 30, 2021
1 parent 790cadd commit 4e21457
Show file tree
Hide file tree
Showing 7 changed files with 973 additions and 0 deletions.
1 change: 1 addition & 0 deletions cmake/operators.cmake
Original file line number Diff line number Diff line change
Expand Up @@ -197,6 +197,7 @@ function(op_library TARGET)
list(REMOVE_ITEM miopen_cu_cc_srcs "grid_sampler_cudnn_op.cu.cc")
list(REMOVE_ITEM hip_srcs "cholesky_op.cu")
list(REMOVE_ITEM hip_srcs "cholesky_solve_op.cu")
list(REMOVE_ITEM hip_srcs "lu_op.cu")
list(REMOVE_ITEM hip_srcs "matrix_rank_op.cu")
list(REMOVE_ITEM hip_srcs "svd_op.cu")
list(REMOVE_ITEM hip_srcs "eigvalsh_op.cu")
Expand Down
162 changes: 162 additions & 0 deletions paddle/fluid/operators/lu_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,162 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/lu_op.h"

namespace paddle {
namespace operators {

class LUOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddComment(R"DOC(LU decomposition,
Computes the LU factorization of a matrix or batches of matrices A.
)DOC");
AddInput("X", "(Tensor) The input tensor, shape of (*,m,n)");
AddOutput("Out", "(Tensor) The output tensor, shape same to X");
AddOutput("Pivots",
"Stores all the intermediate transpositions of rows. shape of "
"(*,min(m,n))");
AddOutput("Infos",
"(Tensor) This is a tensor of size (*) where non-zero values "
"indicate whether factorization for the matrix has succeeded");
AddAttr<bool>("pivots", "Whether pivoting is done").SetDefault(true);
}
};

class LUOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;

void InferShape(framework::InferShapeContext *context) const override {
OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "LU");
OP_INOUT_CHECK(context->HasOutput("Out"), "Output", "Out", "LU");
bool pivots = context->Attrs().Get<bool>("pivots");
auto x_dims = context->GetInputDim("X");
int x_rank = x_dims.size();
PADDLE_ENFORCE_GE(x_rank, 2, platform::errors::InvalidArgument(
"the rank of input must greater than 2"));
context->SetOutputDim("Out", x_dims);
int m = x_dims[x_rank - 1];
int n = x_dims[x_rank - 2];
int min_mn = std::min(m, n);
auto dims_vec = framework::vectorize(x_dims);
OP_INOUT_CHECK(context->HasOutput("Infos"), "Output", "Infos", "LU");
if (x_rank == 2) {
auto Infos_dim = std::vector<int>(1);
context->SetOutputDim("Infos", framework::make_ddim(Infos_dim));
} else {
auto Infos_dim =
std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 2);
context->SetOutputDim("Infos", framework::make_ddim(Infos_dim));
}
if (pivots) {
OP_INOUT_CHECK(context->HasOutput("Pivots"), "Output", "Pivots", "LU");
auto Pivots_dim =
std::vector<int>(dims_vec.begin(), dims_vec.begin() + x_rank - 1);
Pivots_dim[x_rank - 2] = min_mn;
context->SetOutputDim("Pivots", framework::make_ddim(Pivots_dim));
}
}

protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace());
}
};

class LUOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(framework::InferVarTypeContext *ctx) const override {
auto var_type = ctx->GetInputType("X", 0);
auto data_type = ctx->GetInputDataType("X", 0);

ctx->SetOutputType("Out", var_type, framework::ALL_ELEMENTS);
ctx->SetOutputDataType("Out", data_type, framework::ALL_ELEMENTS);

ctx->SetOutputType("Pivots", var_type, framework::ALL_ELEMENTS);
ctx->SetOutputDataType("Pivots", framework::proto::VarType::INT32,
framework::ALL_ELEMENTS);

ctx->SetOutputType("Infos", var_type, framework::ALL_ELEMENTS);
ctx->SetOutputDataType("Infos", framework::proto::VarType::INT32,
framework::ALL_ELEMENTS);
}
};

template <typename T>
class LUKernel : public framework::OpKernel<T> {
public:
void Compute(const paddle::framework::ExecutionContext &ctx) const override {
auto pivots = ctx.Attr<bool>("pivots");
auto *xin = ctx.Input<framework::Tensor>("X");
auto *out = ctx.Output<framework::Tensor>("Out");
auto *IpivT = ctx.Output<framework::Tensor>("Pivots");
auto *InfoT = ctx.Output<framework::Tensor>("Infos");
PADDLE_ENFORCE_EQ(pivots, true,
platform::errors::InvalidArgument(
"lu without pivoting is not implemented on the CPU, "
"but got pivots=False"));

math::DeviceIndependenceTensorOperations<paddle::platform::CPUDeviceContext,
T>
helper(ctx);
*out = helper.Transpose(*xin);

auto outdims = out->dims();
auto outrank = outdims.size();

int m = static_cast<int>(outdims[outrank - 1]);
int n = static_cast<int>(outdims[outrank - 2]);
int lda = std::max(1, m);

auto ipiv_dims = slice_ddim(outdims, 0, outrank - 1);
ipiv_dims[outrank - 2] = std::min(m, n);
IpivT->Resize(ipiv_dims);
auto ipiv_data = IpivT->mutable_data<int>(ctx.GetPlace());

auto info_dims = slice_ddim(outdims, 0, outrank - 2);
if (info_dims.size() == 0) {
info_dims = framework::make_ddim({1});
}
InfoT->Resize(info_dims);
auto info_data = InfoT->mutable_data<int>(ctx.GetPlace());

auto batchsize = product(info_dims);
batchsize = std::max(static_cast<int>(batchsize), 1);
auto out_data = out->mutable_data<T>(ctx.GetPlace());
for (int b = 0; b < batchsize; b++) {
auto out_data_item = &out_data[b * m * n];
int *info_data_item = &info_data[b];
int *ipiv_data_item = &ipiv_data[b * std::min(m, n)];
math::lapackLu<T>(m, n, out_data_item, lda, ipiv_data_item,
info_data_item);
}
*out = helper.Transpose(*out);
}
};

DECLARE_INPLACE_OP_INFERER(LUOpInplaceInferer, {"X", "Out"});

} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OPERATOR(lu, ops::LUOp, ops::LUOpMaker, ops::LUOpVarTypeInference,
ops::LUOpInplaceInferer);

REGISTER_OP_CPU_KERNEL(lu, ops::LUKernel<float>, ops::LUKernel<double>);
156 changes: 156 additions & 0 deletions paddle/fluid/operators/lu_op.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,156 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifndef PADDLE_WITH_HIP
// HIP not support cusolver

#include "paddle/fluid/memory/memory.h"
#include "paddle/fluid/operators/lu_op.h"
#include "paddle/fluid/platform/dynload/cusolver.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using CUDADeviceContext = paddle::platform::CUDADeviceContext;

template <typename T>
void cusolver_bufferSize(const cusolverDnHandle_t& cusolverH, int m, int n,
T* d_A, int lda, int* lwork);
template <typename T>
void cusolver_getrf(const cusolverDnHandle_t& cusolverH, int m, int n, T* d_A,
int lda, T* d_work, int* d_Ipiv, int* d_info);

template <>
void cusolver_bufferSize<float>(const cusolverDnHandle_t& cusolverH, int m,
int n, float* d_A, int lda, int* lwork) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSgetrf_bufferSize(
cusolverH, m, n, d_A, lda, lwork));
}

template <>
void cusolver_bufferSize<double>(const cusolverDnHandle_t& cusolverH, int m,
int n, double* d_A, int lda, int* lwork) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDgetrf_bufferSize(
cusolverH, m, n, d_A, lda, lwork));
}

template <>
void cusolver_getrf<float>(const cusolverDnHandle_t& cusolverH, int m, int n,
float* d_A, int lda, float* d_work, int* d_Ipiv,
int* d_info) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnSgetrf(
cusolverH, m, n, d_A, lda, d_work, d_Ipiv, d_info));
}

template <>
void cusolver_getrf<double>(const cusolverDnHandle_t& cusolverH, int m, int n,
double* d_A, int lda, double* d_work, int* d_Ipiv,
int* d_info) {
PADDLE_ENFORCE_GPU_SUCCESS(platform::dynload::cusolverDnDgetrf(
cusolverH, m, n, d_A, lda, d_work, d_Ipiv, d_info));
}

template <typename T>
void lu_decomposed_kernel(int m, int n, T* d_A, int lda, int* d_Ipiv,
int* d_info, const framework::ExecutionContext& ctx) {
/* step 1: get cusolver handle*/
auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
auto cusolverH = dev_ctx.cusolver_dn_handle();

/* step 2: query working space of getrf */
int lwork;
cusolver_bufferSize(cusolverH, m, n, d_A, lda, &lwork);

auto work_buff = memory::Alloc(dev_ctx, lwork * sizeof(T));
T* d_work = reinterpret_cast<T*>(work_buff->ptr());

/* step 3: LU factorization */
if (d_Ipiv) {
cusolver_getrf(cusolverH, m, n, d_A, lda, d_work, d_Ipiv, d_info);
} else {
cusolver_getrf(cusolverH, m, n, d_A, lda, d_work, NULL, d_info);
}
PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize());
}

template <typename T>
class LUCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
#ifdef __HIPCC__
const int64_t kMaxBlockDim = 256;
#else
const int64_t kMaxBlockDim = 512;
#endif
auto* xin = ctx.Input<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
auto* IpivT = ctx.Output<framework::Tensor>("Pivots");
auto* InfoT = ctx.Output<framework::Tensor>("Infos");
auto pivots = ctx.Attr<bool>("pivots");

math::DeviceIndependenceTensorOperations<
paddle::platform::CUDADeviceContext, T>
helper(ctx);
*out = helper.Transpose(*xin);

auto outdims = out->dims();
auto outrank = outdims.size();

int m = static_cast<int>(outdims[outrank - 1]);
int n = static_cast<int>(outdims[outrank - 2]);
int lda = std::max(1, m);
if (pivots) {
auto ipiv_dims = slice_ddim(outdims, 0, outrank - 1);
ipiv_dims[outrank - 2] = std::min(m, n);
IpivT->Resize(ipiv_dims);
}
auto ipiv_data = IpivT->mutable_data<int>(ctx.GetPlace());

auto info_dims = slice_ddim(outdims, 0, outrank - 2);
if (info_dims.size() == 0) {
info_dims = framework::make_ddim({1});
}
InfoT->Resize(info_dims);
auto info_data = InfoT->mutable_data<int>(ctx.GetPlace());

auto batchsize = product(info_dims);
batchsize = std::max(static_cast<int>(batchsize), 1);
auto out_data = out->mutable_data<T>(ctx.GetPlace());
for (int b = 0; b < batchsize; b++) {
auto out_data_item = &out_data[b * m * n];
int* info_data_item = &info_data[b];
if (pivots) {
auto ipiv_data_item = &ipiv_data[b * std::min(m, n)];
lu_decomposed_kernel(m, n, out_data_item, lda, ipiv_data_item,
info_data_item, ctx);
} else {
lu_decomposed_kernel(m, n, out_data_item, lda, NULL, info_data_item,
ctx);
}
}
*out = helper.Transpose(*out);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;
namespace plat = paddle::platform;

REGISTER_OP_CUDA_KERNEL(lu, ops::LUCUDAKernel<float>,
ops::LUCUDAKernel<double>);

#endif // not PADDLE_WITH_HIP
Loading

0 comments on commit 4e21457

Please sign in to comment.