-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Dygraph reocmpute * unitest for Dygraph reocmpute * dy recompute remove unitest for win and mac
- Loading branch information
Showing
4 changed files
with
355 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -14,3 +14,4 @@ | |
|
||
from .fs import LocalFS, HDFSClient | ||
from .ps_util import DistributedInfer | ||
from .recompute import recompute |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,177 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import paddle | ||
from paddle.fluid import core | ||
from paddle.autograd import PyLayer | ||
from paddle.fluid import framework | ||
import contextlib | ||
|
||
import logging | ||
logging.basicConfig( | ||
format='%(asctime)s %(levelname)-8s %(message)s', | ||
datefmt='%Y-%m-%d %H:%M:%S') | ||
|
||
|
||
def detach_variable(inputs): | ||
out = [] | ||
for inp in inputs: | ||
if not isinstance(inp, core.VarBase): | ||
out.append(inp) | ||
continue | ||
|
||
x = inp.detach() | ||
x.stop_gradient = inp.stop_gradient | ||
out.append(x) | ||
return tuple(out) | ||
|
||
|
||
def check_recompute_necessary(inputs): | ||
if not any(input_.stop_gradient == False for input_ in inputs | ||
if isinstance(input_, paddle.Tensor)): | ||
logging.warn( | ||
"[Recompute]: None of the inputs to current recompute block need grad, " | ||
"therefore there is NO need to recompute this block in backward !") | ||
|
||
|
||
@contextlib.contextmanager | ||
def swith_rng_state(rng_state): | ||
orig_cuda_rng_state = paddle.get_cuda_rng_state() | ||
paddle.set_cuda_rng_state(rng_state) | ||
try: | ||
yield | ||
finally: | ||
paddle.set_cuda_rng_state(orig_cuda_rng_state) | ||
|
||
|
||
class RecomputeFunction(PyLayer): | ||
@staticmethod | ||
def forward(ctx, run_function, preserve_rng_state, *args): | ||
check_recompute_necessary(args) | ||
|
||
# store for recomputing | ||
ctx.run_function = run_function | ||
ctx.preserve_rng_state = preserve_rng_state | ||
|
||
# NOTE the number of outputs of backward() should be equal to the number of tensors in forward()'s input | ||
# the order of tensors in backward()'s output should be the same as tensors in forward()'s input | ||
# None tensor inputs will be filtered in backward inputs. | ||
|
||
# save input for backward | ||
ctx.inputs = [] | ||
ctx.tensor_indices = [] | ||
tensor_inputs = [] | ||
for i, arg in enumerate(args): | ||
if paddle.is_tensor(arg): | ||
tensor_inputs.append(arg) | ||
ctx.tensor_indices.append(i) | ||
ctx.inputs.append(None) | ||
else: | ||
ctx.inputs.append(arg) | ||
ctx.save_for_backward(*tensor_inputs) | ||
|
||
# NOTE recompute with restore RNG only support one senario where one process for one cuda gpu. | ||
# one process with multiple gpu and mix-gpu-cpu senarios are not support | ||
if ctx.preserve_rng_state: | ||
cur_device = paddle.get_device() | ||
if 'gpu:' not in cur_device: | ||
raise RuntimeError( | ||
"Recompute with RNG perserve is not support current device: {}.". | ||
format(cur_device)) | ||
ctx.fw_cuda_rng_state = paddle.get_cuda_rng_state() | ||
|
||
# TODO support AMP | ||
|
||
with paddle.no_grad(): | ||
outputs = run_function(*args) | ||
|
||
return outputs | ||
|
||
@staticmethod | ||
def backward(ctx, *args): | ||
with paddle.fluid.dygraph.guard(): | ||
# TODO need to check the recompute calling is vaild or not | ||
|
||
# Restore inputs | ||
inputs = list(ctx.inputs) | ||
tensor_indices = ctx.tensor_indices | ||
tensors = ctx.saved_tensor() | ||
for i, idx in enumerate(tensor_indices): | ||
inputs[idx] = tensors[i] | ||
|
||
# paddle.enable_grad() | ||
tracer = framework._dygraph_tracer() | ||
tracer._has_grad = True | ||
|
||
# TODO support AMP | ||
|
||
if ctx.preserve_rng_state: | ||
with swith_rng_state(ctx.fw_cuda_rng_state): | ||
detached_inputs = detach_variable(tuple(inputs)) | ||
outputs = ctx.run_function(*detached_inputs) | ||
else: | ||
detached_inputs = detach_variable(tuple(inputs)) | ||
outputs = ctx.run_function(*detached_inputs) | ||
|
||
if isinstance(outputs, core.VarBase): | ||
outputs = (outputs, ) | ||
assert len(outputs) == len(args) | ||
|
||
# run backward() with only tensor that requires grad | ||
forward_outputs_with_grad = [] | ||
backward_inputs = list(args) | ||
for i in range(len(outputs)): | ||
if isinstance(outputs[i], | ||
core.VarBase) and not outputs[i].stop_gradient: | ||
forward_outputs_with_grad.append(outputs[i]) | ||
if len(forward_outputs_with_grad) == 0: | ||
raise RuntimeError( | ||
"none of output has requires_grad=True, this recompute() is not necessary" | ||
) | ||
|
||
assert len(backward_inputs) == len( | ||
forward_outputs_with_grad | ||
), "number of forward outputs is [{}], but the backward got [{}] inputs".format( | ||
len(forward_outputs_with_grad), len(backward_inputs)) | ||
|
||
# actually backward | ||
paddle.autograd.backward(forward_outputs_with_grad, backward_inputs) | ||
|
||
grads = list(inp._grad_ivar() for inp in detached_inputs | ||
if isinstance(inp, core.VarBase)) | ||
|
||
return grads | ||
|
||
|
||
def recompute(function, *args, **kwargs): | ||
""" | ||
recompute intermediate activations to save then memory. | ||
Args: | ||
function: layer of sequence of layers that describes part of forward pass of the model whose | ||
intermediate activations will be released to save memory in forward stage and will be recomputed | ||
in backward stage for gradient calculation. | ||
preserve_rng_state(bool, optional): if preserve the RNG state of forward and restore it in backward. | ||
args: inputs to the function | ||
Returns: | ||
Output of function on args | ||
""" | ||
# Hack to mix *args with **kwargs in a python 2.7-compliant way | ||
preserve = kwargs.pop('preserve_rng_state', True) | ||
if kwargs: | ||
raise ValueError("Unexpected keyword arguments: " + ",".join( | ||
arg for arg in kwargs)) | ||
|
||
return RecomputeFunction.apply(function, preserve, *args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
176 changes: 176 additions & 0 deletions
176
python/paddle/fluid/tests/unittests/test_dygraph_recompute.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,176 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import unittest | ||
import numpy as np | ||
|
||
import paddle | ||
from paddle.autograd import PyLayer | ||
from paddle.distributed.fleet.utils import recompute | ||
import random | ||
|
||
import paddle.fluid.layers as layers | ||
|
||
|
||
def get_fc_block(block_idx, input_size, is_last=False): | ||
block_name = "block_" + str(block_idx) | ||
block = paddle.nn.Sequential( | ||
(block_name + "_fc_0", paddle.nn.Linear( | ||
input_size, input_size, bias_attr=False)), | ||
(block_name + "_dropout", paddle.nn.Dropout(p=0.5)), | ||
(block_name + "_relu_1", paddle.nn.ReLU()), | ||
(block_name + "_fc_1", paddle.nn.Linear( | ||
input_size, input_size, bias_attr=False)), | ||
(block_name + "_relu_2", paddle.nn.ReLU()), ) | ||
if is_last: | ||
block.add_sublayer( | ||
block_name + "_fc_2", | ||
paddle.nn.Linear( | ||
input_size, 1, bias_attr=False)) # add sublayer | ||
else: | ||
block.add_sublayer( | ||
block_name + "_fc_2", | ||
paddle.nn.Linear( | ||
input_size, input_size, bias_attr=False)) # add sublayer | ||
return block | ||
|
||
|
||
class Naive_fc_net(paddle.nn.Layer): | ||
def __init__(self, | ||
input_size=10, | ||
recompute_blocks=[1, 3], | ||
recompute_kwargs={}): | ||
super(Naive_fc_net, self).__init__() | ||
self.recompute_blocks = recompute_blocks | ||
self.recompute_kwargs = recompute_kwargs | ||
self.runfunc0 = get_fc_block(0, input_size, is_last=False) | ||
self.runfunc1 = get_fc_block(1, input_size, is_last=False) | ||
self.runfunc2 = get_fc_block(2, input_size, is_last=False) | ||
self.runfunc3 = get_fc_block(3, input_size, is_last=False) | ||
self.runfunc4 = get_fc_block(4, input_size, is_last=True) | ||
|
||
def forward(self, inputs): | ||
|
||
if 0 in self.recompute_blocks: | ||
inputs = recompute(self.runfunc0, inputs) | ||
else: | ||
inputs = self.runfunc0(inputs) | ||
|
||
if 1 in self.recompute_blocks: | ||
inputs = recompute(self.runfunc1, inputs) | ||
else: | ||
inputs = self.runfunc1(inputs) | ||
|
||
if 2 in self.recompute_blocks: | ||
inputs = recompute(self.runfunc2, inputs, **self.recompute_kwargs) | ||
else: | ||
inputs = self.runfunc2(inputs) | ||
|
||
if 3 in self.recompute_blocks: | ||
inputs = recompute(self.runfunc3, inputs) | ||
else: | ||
inputs = self.runfunc3(inputs) | ||
|
||
if 4 in self.recompute_blocks: | ||
inputs = recompute(self.runfunc4, inputs) | ||
else: | ||
inputs = self.runfunc4(inputs) | ||
|
||
return inputs | ||
|
||
|
||
def run_model(cuda_state, recompute_block=[], recompute_kwargs={}): | ||
gen = paddle.seed(10) | ||
gen.manual_seed(10) | ||
np.random.seed(10) | ||
random.seed(10) | ||
|
||
if cuda_state: | ||
paddle.set_cuda_rng_state(cuda_state) | ||
|
||
batch_size, input_size = 1, 10 | ||
model = Naive_fc_net( | ||
input_size, | ||
recompute_blocks=recompute_block, | ||
recompute_kwargs=recompute_kwargs) | ||
loss_fn = paddle.nn.MSELoss(reduction='mean') | ||
optimizer = paddle.optimizer.SGD(learning_rate=0.01, | ||
parameters=model.parameters()) | ||
|
||
loss_ = [] | ||
param_ = [] | ||
grad_ = [] | ||
for step in range(10): | ||
x_data = np.random.randn(batch_size, input_size).astype(np.float32) | ||
x = paddle.to_tensor(x_data) | ||
# x.stop_gradient = False | ||
y_pred = model(x) | ||
loss = y_pred.mean() | ||
|
||
loss_.append(np.asarray(loss).tolist()) | ||
loss.backward() | ||
optimizer.step() | ||
|
||
param_.append(np.asarray(model.parameters()[9]).tolist()) | ||
grad_.append(np.asarray(model.parameters()[3]._grad_ivar()).tolist()) | ||
|
||
optimizer.clear_grad() | ||
return loss_, param_, grad_ | ||
|
||
|
||
class TestPyLayer(unittest.TestCase): | ||
def test_fc_net_with_dropout(self): | ||
def check_identical(loss_ref, param_ref, grad_ref, loss, param, grad): | ||
self.assertEqual(loss_ref, loss) | ||
self.assertEqual(param_ref, param) | ||
self.assertEqual(grad_ref, grad) | ||
|
||
cuda_state = paddle.get_cuda_rng_state() | ||
# without recompute | ||
loss_ref, param_ref, grad_ref = run_model( | ||
cuda_state, recompute_block=[]) | ||
|
||
# recompute second block | ||
loss, param, grad = run_model(cuda_state, recompute_block=[1, 3]) | ||
check_identical(loss_ref, param_ref, grad_ref, loss, param, grad) | ||
|
||
# recompute fourth block | ||
loss, param, grad = run_model(cuda_state, recompute_block=[3]) | ||
check_identical(loss_ref, param_ref, grad_ref, loss, param, grad) | ||
|
||
# recompute second to fourth block | ||
loss, param, grad = run_model(cuda_state, recompute_block=[1, 2, 3]) | ||
check_identical(loss_ref, param_ref, grad_ref, loss, param, grad) | ||
|
||
# recompute second & fourth block | ||
loss, param, grad = run_model(cuda_state, recompute_block=[1, 3]) | ||
check_identical(loss_ref, param_ref, grad_ref, loss, param, grad) | ||
|
||
def test_recompute_kwargs(self): | ||
paddle.set_device("gpu") | ||
kwargs = {"is_test": False} | ||
with self.assertRaises(ValueError): | ||
loss_ref, param_ref, grad_ref = run_model( | ||
None, recompute_block=[2], recompute_kwargs=kwargs) | ||
|
||
def test_recompute_cpu_rng(self): | ||
paddle.set_device("cpu") | ||
with self.assertRaises(RuntimeError): | ||
loss_ref, param_ref, grad_ref = run_model(None, recompute_block=[2]) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |