-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[cherry-pick] Add Sparse API to_dense, to_sparse_coo and values (#41394…
…) (#41834) Add paddle.sparse and three Sparse API (#41276) Add Sparse API to_dense, to_sparse_coo and values (#41394)
- Loading branch information
zhangkaihuo
authored
Apr 15, 2022
1 parent
86bbb0f
commit 8300e61
Showing
17 changed files
with
663 additions
and
109 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h" | ||
#include "paddle/phi/core/ddim.h" | ||
#include "paddle/phi/core/enforce.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/copy_kernel.h" | ||
#include "paddle/phi/kernels/empty_kernel.h" | ||
#include "paddle/phi/kernels/funcs/math_function.h" | ||
|
||
#include "paddle/phi/api/ext/dispatch.h" | ||
|
||
namespace phi { | ||
namespace sparse { | ||
|
||
template <typename T, typename IntT> | ||
void SparseMaskCPUKernel(const CPUContext& dev_ctx, | ||
const DenseTensor& x, | ||
const SparseCooTensor& mask, | ||
SparseCooTensor* out) { | ||
const DDim& dims = x.dims(); | ||
PADDLE_ENFORCE_EQ( | ||
x.dims(), | ||
mask.dims(), | ||
phi::errors::InvalidArgument("the input x and mask must have the shape")); | ||
const DenseTensor& indices = mask.non_zero_indices(); | ||
const DenseTensor& values = mask.non_zero_elements(); | ||
int sparse_dim = indices.dims().size(); | ||
std::vector<int64_t> sparse_offsets(sparse_dim); | ||
int64_t offset = 1; | ||
for (int i = sparse_dim - 1; i >= 0; i--) { | ||
sparse_offsets[i] = offset; | ||
offset *= dims[i]; | ||
} | ||
|
||
DenseTensor out_indices = phi::EmptyLike<T>(dev_ctx, indices); | ||
DenseTensor out_values = phi::EmptyLike<T>(dev_ctx, values); | ||
|
||
// the out_indices is same as indices of mask | ||
phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &out_indices); | ||
|
||
const IntT* indices_ptr = indices.data<IntT>(); | ||
T* out_values_ptr = out_values.data<T>(); | ||
const T* x_ptr = x.data<T>(); | ||
|
||
const int64_t non_zero_num = mask.nnz(); | ||
auto dims_2d = flatten_to_2d(dims, sparse_dim); | ||
const int cols = dims_2d[1]; | ||
|
||
for (int64_t i = 0; i < non_zero_num; i++) { | ||
int64_t index = 0; | ||
for (int j = 0; j < sparse_dim; j++) { | ||
index += indices_ptr[j * non_zero_num + i] * sparse_offsets[j]; | ||
} | ||
memcpy(out_values_ptr + i * cols, x_ptr + index * cols, cols * sizeof(T)); | ||
} | ||
out->SetMember(out_indices, out_values, dims, true); | ||
} | ||
|
||
/** | ||
* @brief Filter the DenseTensor x by the | ||
* mask.non_zero_indices() and output a SparseCooTensor | ||
* x and mask must have the same shape. | ||
**/ | ||
template <typename T, typename Context> | ||
void SparseMaskKernel(const Context& dev_ctx, | ||
const DenseTensor& x, | ||
const SparseCooTensor& mask, | ||
SparseCooTensor* out) { | ||
PD_DISPATCH_INTEGRAL_TYPES( | ||
mask.non_zero_indices().dtype(), "SparseMaskCPUKernel", ([&] { | ||
SparseMaskCPUKernel<T, data_t>(dev_ctx, x, mask, out); | ||
})); | ||
} | ||
|
||
} // namespace sparse | ||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(sparse_mask, | ||
CPU, | ||
ALL_LAYOUT, | ||
phi::sparse::SparseMaskKernel, | ||
float, | ||
double, | ||
uint8_t, | ||
int8_t, | ||
int16_t, | ||
int, | ||
int64_t) { | ||
kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/phi/backends/gpu/gpu_info.h" | ||
#include "paddle/phi/backends/gpu/gpu_launch_config.h" | ||
#include "paddle/phi/core/ddim.h" | ||
#include "paddle/phi/core/enforce.h" | ||
#include "paddle/phi/core/kernel_registry.h" | ||
#include "paddle/phi/kernels/copy_kernel.h" | ||
#include "paddle/phi/kernels/empty_kernel.h" | ||
#include "paddle/phi/kernels/funcs/math_function.h" | ||
#include "paddle/phi/kernels/sparse/sparse_mask_kernel.h" | ||
|
||
#include "paddle/phi/api/ext/dispatch.h" | ||
|
||
namespace phi { | ||
namespace sparse { | ||
|
||
template <typename T, typename IntT> | ||
__global__ void MaskKernel(const T* x_ptr, | ||
const IntT* indices_ptr, | ||
const int64_t* sparse_offsets, | ||
const int64_t non_zero_num, | ||
const int cols, | ||
const int sparse_dim, | ||
T* out_values_ptr) { | ||
CUDA_KERNEL_LOOP_TYPE(i, non_zero_num * cols, int64_t) { | ||
int64_t out_i = i / cols; | ||
int64_t col_i = i - out_i * cols; | ||
int64_t index = 0; | ||
for (int j = 0; j < sparse_dim; j++) { | ||
index += indices_ptr[j * non_zero_num + i] * sparse_offsets[j]; | ||
} | ||
out_values_ptr[out_i * cols + col_i] = x_ptr[index * cols + col_i]; | ||
} | ||
} | ||
|
||
template <typename T, typename IntT> | ||
void SparseMaskGPUKernel(const GPUContext& dev_ctx, | ||
const DenseTensor& x, | ||
const SparseCooTensor& mask, | ||
SparseCooTensor* out) { | ||
const DDim& dims = x.dims(); | ||
PADDLE_ENFORCE_EQ( | ||
x.dims(), | ||
mask.dims(), | ||
phi::errors::InvalidArgument("the input x and mask must have the shape")); | ||
const DenseTensor& indices = mask.non_zero_indices(); | ||
const DenseTensor& values = mask.non_zero_elements(); | ||
int sparse_dim = indices.dims().size(); | ||
DenseTensor sparse_offsets = phi::Empty( | ||
dev_ctx, | ||
DenseTensorMeta(DataType::INT64, {sparse_dim}, DataLayout::NCHW)); | ||
std::vector<int64_t> h_sparse_offsets(sparse_dim); | ||
int64_t offset = 1; | ||
for (int i = sparse_dim - 1; i >= 0; i--) { | ||
h_sparse_offsets[i] = offset; | ||
offset *= dims[i]; | ||
} | ||
|
||
phi::backends::gpu::GpuMemcpyAsync(sparse_offsets.data<int64_t>(), | ||
&h_sparse_offsets[0], | ||
sizeof(int64_t) * sparse_dim, | ||
#ifdef PADDLE_WITH_HIP | ||
hipMemcpyHostToDevice, | ||
#else | ||
cudaMemcpyHostToDevice, | ||
#endif | ||
dev_ctx.stream()); | ||
|
||
DenseTensor out_indices = phi::EmptyLike<T>(dev_ctx, indices); | ||
DenseTensor out_values = phi::EmptyLike<T>(dev_ctx, values); | ||
|
||
phi::Copy(dev_ctx, indices, dev_ctx.GetPlace(), false, &out_indices); | ||
|
||
const IntT* indices_ptr = indices.data<IntT>(); | ||
T* out_values_ptr = out_values.data<T>(); | ||
const T* x_ptr = x.data<T>(); | ||
const int64_t non_zero_num = mask.nnz(); | ||
auto dims_2d = flatten_to_2d(dims, sparse_dim); | ||
const int cols = dims_2d[1]; | ||
|
||
auto config = | ||
phi::backends::gpu::GetGpuLaunchConfig1D(dev_ctx, non_zero_num * cols, 1); | ||
MaskKernel<T, IntT><<<config.block_per_grid, config.thread_per_block>>>( | ||
x_ptr, | ||
indices_ptr, | ||
sparse_offsets.data<int64_t>(), | ||
non_zero_num, | ||
cols, | ||
sparse_dim, | ||
out_values_ptr); | ||
|
||
out->SetMember(out_indices, out_values, dims, true); | ||
} | ||
|
||
/** | ||
* @brief Filter the DenseTensor x by the | ||
* mask.non_zero_indices() and output a SparseCooTensor | ||
* x and mask must have the same shape. | ||
**/ | ||
template <typename T, typename Context> | ||
void SparseMaskKernel(const Context& dev_ctx, | ||
const DenseTensor& x, | ||
const SparseCooTensor& mask, | ||
SparseCooTensor* out) { | ||
PD_DISPATCH_INTEGRAL_TYPES( | ||
mask.non_zero_indices().dtype(), "SparseMaskGPUKernel", ([&] { | ||
SparseMaskGPUKernel<T, data_t>(dev_ctx, x, mask, out); | ||
})); | ||
} | ||
|
||
} // namespace sparse | ||
} // namespace phi | ||
|
||
PD_REGISTER_KERNEL(sparse_mask, | ||
GPU, | ||
ALL_LAYOUT, | ||
phi::sparse::SparseMaskKernel, | ||
float, | ||
double, | ||
phi::dtype::float16, | ||
uint8_t, | ||
int8_t, | ||
int16_t, | ||
int, | ||
int64_t) { | ||
kernel->InputAt(1).SetDataLayout(phi::DataLayout::SPARSE_COO); | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.