-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MLU] add_fluid_mluop_yolo_box (#46573)
- Loading branch information
Showing
5 changed files
with
476 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,137 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/operators/mlu/mlu_baseop.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
template <typename T> | ||
class YoloBoxMLUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<phi::DenseTensor>("X"); | ||
auto* img_size = ctx.Input<phi::DenseTensor>("ImgSize"); | ||
auto* boxes = ctx.Output<phi::DenseTensor>("Boxes"); | ||
auto* scores = ctx.Output<phi::DenseTensor>("Scores"); | ||
const std::vector<int> anchors = ctx.Attr<std::vector<int>>("anchors"); | ||
auto class_num = ctx.Attr<int>("class_num"); | ||
auto conf_thresh = ctx.Attr<float>("conf_thresh"); | ||
auto downsample_ratio = ctx.Attr<int>("downsample_ratio"); | ||
auto clip_bbox = ctx.Attr<bool>("clip_bbox"); | ||
auto scale = ctx.Attr<float>("scale_x_y"); | ||
auto iou_aware = ctx.Attr<bool>("iou_aware"); | ||
auto iou_aware_factor = ctx.Attr<float>("iou_aware_factor"); | ||
|
||
int anchor_num = anchors.size() / 2; | ||
int64_t size = anchors.size(); | ||
auto dim_x = x->dims(); | ||
int n = dim_x[0]; | ||
int s = anchor_num; | ||
int h = dim_x[2]; | ||
int w = dim_x[3]; | ||
|
||
// The output of mluOpYoloBox: A 4-D tensor with shape [N, anchor_num, 4, | ||
// H*W], the coordinates of boxes, and a 4-D tensor with shape [N, | ||
// anchor_num, :attr:`class_num`, H*W], the classification scores of boxes. | ||
std::vector<int64_t> boxes_dim_mluops({n, s, 4, h * w}); | ||
std::vector<int64_t> scores_dim_mluops({n, s, class_num, h * w}); | ||
|
||
// In Paddle framework: A 3-D tensor with shape [N, M, 4], the coordinates | ||
// of boxes, and a 3-D tensor with shape [N, M, :attr:`class_num`], the | ||
// classification scores of boxes. | ||
std::vector<int64_t> boxes_out_dim({n, s, h * w, 4}); | ||
std::vector<int64_t> scores_out_dim({n, s, h * w, class_num}); | ||
|
||
auto& dev_ctx = ctx.template device_context<MLUDeviceContext>(); | ||
phi::DenseTensor boxes_tensor_mluops = | ||
ctx.AllocateTmpTensor<T, MLUDeviceContext>({n, s, 4, h * w}, dev_ctx); | ||
phi::DenseTensor scores_tensor_mluops = | ||
ctx.AllocateTmpTensor<T, MLUDeviceContext>({n, s, class_num, h * w}, | ||
dev_ctx); | ||
MLUOpTensorDesc boxes_trans_desc_mluops( | ||
4, boxes_dim_mluops.data(), ToMluOpDataType<T>()); | ||
MLUCnnlTensorDesc boxes_trans_desc_cnnl( | ||
4, boxes_dim_mluops.data(), ToCnnlDataType<T>()); | ||
MLUOpTensorDesc scores_trans_desc_mluops( | ||
4, scores_dim_mluops.data(), ToMluOpDataType<T>()); | ||
MLUCnnlTensorDesc scores_trans_desc_cnnl( | ||
4, scores_dim_mluops.data(), ToCnnlDataType<T>()); | ||
|
||
boxes->mutable_data<T>(ctx.GetPlace()); | ||
scores->mutable_data<T>(ctx.GetPlace()); | ||
FillMLUTensorWithHostValue(ctx, static_cast<T>(0), boxes); | ||
FillMLUTensorWithHostValue(ctx, static_cast<T>(0), scores); | ||
|
||
MLUOpTensorDesc x_desc(*x, MLUOP_LAYOUT_ARRAY, ToMluOpDataType<T>()); | ||
MLUOpTensorDesc img_size_desc( | ||
*img_size, MLUOP_LAYOUT_ARRAY, ToMluOpDataType<int32_t>()); | ||
Tensor anchors_temp(framework::TransToPhiDataType(VT::INT32)); | ||
anchors_temp.Resize({size}); | ||
paddle::framework::TensorFromVector( | ||
anchors, ctx.device_context(), &anchors_temp); | ||
MLUOpTensorDesc anchors_desc(anchors_temp); | ||
MLUCnnlTensorDesc boxes_desc_cnnl( | ||
4, boxes_out_dim.data(), ToCnnlDataType<T>()); | ||
MLUCnnlTensorDesc scores_desc_cnnl( | ||
4, scores_out_dim.data(), ToCnnlDataType<T>()); | ||
|
||
MLUOP::OpYoloBox(ctx, | ||
x_desc.get(), | ||
GetBasePtr(x), | ||
img_size_desc.get(), | ||
GetBasePtr(img_size), | ||
anchors_desc.get(), | ||
GetBasePtr(&anchors_temp), | ||
class_num, | ||
conf_thresh, | ||
downsample_ratio, | ||
clip_bbox, | ||
scale, | ||
iou_aware, | ||
iou_aware_factor, | ||
boxes_trans_desc_mluops.get(), | ||
GetBasePtr(&boxes_tensor_mluops), | ||
scores_trans_desc_mluops.get(), | ||
GetBasePtr(&scores_tensor_mluops)); | ||
const std::vector<int> perm = {0, 1, 3, 2}; | ||
|
||
// transpose the boxes from [N, S, 4, H*W] to [N, S, H*W, 4] | ||
MLUCnnl::Transpose(ctx, | ||
perm, | ||
4, | ||
boxes_trans_desc_cnnl.get(), | ||
GetBasePtr(&boxes_tensor_mluops), | ||
boxes_desc_cnnl.get(), | ||
GetBasePtr(boxes)); | ||
|
||
// transpose the scores from [N, S, class_num, H*W] to [N, S, H*W, | ||
// class_num] | ||
MLUCnnl::Transpose(ctx, | ||
perm, | ||
4, | ||
scores_trans_desc_cnnl.get(), | ||
GetBasePtr(&scores_tensor_mluops), | ||
scores_desc_cnnl.get(), | ||
GetBasePtr(scores)); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
|
||
REGISTER_OP_MLU_KERNEL(yolo_box, ops::YoloBoxMLUKernel<float>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.