-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* update AvgPool2D to AdaptiveAvgPool2D * class_num -> num_classes * add en doc * add googlenet to pretrained test * remove weights name * add parameter with_pool * update en doc * fix googlenet out shape * 2020 -> 2021 Co-authored-by: Ainavo <ainavo@163.com> Co-authored-by: pithygit <pyg20200403@163.com> Co-authored-by: Ainavo <ainavo@163.com> Co-authored-by: pithygit <pyg20200403@163.com>
- Loading branch information
1 parent
442688a
commit 8937205
Showing
5 changed files
with
265 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import paddle | ||
import paddle.nn as nn | ||
import paddle.nn.functional as F | ||
|
||
from paddle.nn import Conv2D, Linear, Dropout | ||
from paddle.nn import MaxPool2D, AvgPool2D, AdaptiveAvgPool2D | ||
from paddle.nn.initializer import Uniform | ||
from paddle.fluid.param_attr import ParamAttr | ||
from paddle.utils.download import get_weights_path_from_url | ||
|
||
__all__ = [] | ||
|
||
model_urls = { | ||
"googlenet": | ||
("https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/GoogLeNet_pretrained.pdparams", | ||
"80c06f038e905c53ab32c40eca6e26ae") | ||
} | ||
|
||
|
||
def xavier(channels, filter_size): | ||
stdv = (3.0 / (filter_size**2 * channels))**0.5 | ||
param_attr = ParamAttr(initializer=Uniform(-stdv, stdv)) | ||
return param_attr | ||
|
||
|
||
class ConvLayer(nn.Layer): | ||
def __init__(self, | ||
num_channels, | ||
num_filters, | ||
filter_size, | ||
stride=1, | ||
groups=1): | ||
super(ConvLayer, self).__init__() | ||
|
||
self._conv = Conv2D( | ||
in_channels=num_channels, | ||
out_channels=num_filters, | ||
kernel_size=filter_size, | ||
stride=stride, | ||
padding=(filter_size - 1) // 2, | ||
groups=groups, | ||
bias_attr=False) | ||
|
||
def forward(self, inputs): | ||
y = self._conv(inputs) | ||
return y | ||
|
||
|
||
class Inception(nn.Layer): | ||
def __init__(self, input_channels, output_channels, filter1, filter3R, | ||
filter3, filter5R, filter5, proj): | ||
super(Inception, self).__init__() | ||
|
||
self._conv1 = ConvLayer(input_channels, filter1, 1) | ||
self._conv3r = ConvLayer(input_channels, filter3R, 1) | ||
self._conv3 = ConvLayer(filter3R, filter3, 3) | ||
self._conv5r = ConvLayer(input_channels, filter5R, 1) | ||
self._conv5 = ConvLayer(filter5R, filter5, 5) | ||
self._pool = MaxPool2D(kernel_size=3, stride=1, padding=1) | ||
|
||
self._convprj = ConvLayer(input_channels, proj, 1) | ||
|
||
def forward(self, inputs): | ||
conv1 = self._conv1(inputs) | ||
|
||
conv3r = self._conv3r(inputs) | ||
conv3 = self._conv3(conv3r) | ||
|
||
conv5r = self._conv5r(inputs) | ||
conv5 = self._conv5(conv5r) | ||
|
||
pool = self._pool(inputs) | ||
convprj = self._convprj(pool) | ||
|
||
cat = paddle.concat([conv1, conv3, conv5, convprj], axis=1) | ||
cat = F.relu(cat) | ||
return cat | ||
|
||
|
||
class GoogLeNet(nn.Layer): | ||
"""GoogLeNet (Inception v1) model architecture from | ||
`"Going Deeper with Convolutions" <https://arxiv.org/pdf/1409.4842.pdf>`_ | ||
Args: | ||
num_classes (int): output dim of last fc layer. If num_classes <=0, last fc layer | ||
will not be defined. Default: 1000. | ||
with_pool (bool, optional): use pool before the last fc layer or not. Default: True. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.vision.models import GoogLeNet | ||
# build model | ||
model = GoogLeNet() | ||
x = paddle.rand([1, 3, 224, 224]) | ||
out, out1, out2 = model(x) | ||
print(out.shape) | ||
""" | ||
|
||
def __init__(self, num_classes=1000, with_pool=True): | ||
super(GoogLeNet, self).__init__() | ||
self.num_classes = num_classes | ||
self.with_pool = with_pool | ||
|
||
self._conv = ConvLayer(3, 64, 7, 2) | ||
self._pool = MaxPool2D(kernel_size=3, stride=2) | ||
self._conv_1 = ConvLayer(64, 64, 1) | ||
self._conv_2 = ConvLayer(64, 192, 3) | ||
|
||
self._ince3a = Inception(192, 192, 64, 96, 128, 16, 32, 32) | ||
self._ince3b = Inception(256, 256, 128, 128, 192, 32, 96, 64) | ||
|
||
self._ince4a = Inception(480, 480, 192, 96, 208, 16, 48, 64) | ||
self._ince4b = Inception(512, 512, 160, 112, 224, 24, 64, 64) | ||
self._ince4c = Inception(512, 512, 128, 128, 256, 24, 64, 64) | ||
self._ince4d = Inception(512, 512, 112, 144, 288, 32, 64, 64) | ||
self._ince4e = Inception(528, 528, 256, 160, 320, 32, 128, 128) | ||
|
||
self._ince5a = Inception(832, 832, 256, 160, 320, 32, 128, 128) | ||
self._ince5b = Inception(832, 832, 384, 192, 384, 48, 128, 128) | ||
|
||
if with_pool: | ||
# out | ||
self._pool_5 = AdaptiveAvgPool2D(1) | ||
# out1 | ||
self._pool_o1 = AvgPool2D(kernel_size=5, stride=3) | ||
# out2 | ||
self._pool_o2 = AvgPool2D(kernel_size=5, stride=3) | ||
|
||
if num_classes > 0: | ||
# out | ||
self._drop = Dropout(p=0.4, mode="downscale_in_infer") | ||
self._fc_out = Linear( | ||
1024, num_classes, weight_attr=xavier(1024, 1)) | ||
|
||
# out1 | ||
self._conv_o1 = ConvLayer(512, 128, 1) | ||
self._fc_o1 = Linear(1152, 1024, weight_attr=xavier(2048, 1)) | ||
self._drop_o1 = Dropout(p=0.7, mode="downscale_in_infer") | ||
self._out1 = Linear(1024, num_classes, weight_attr=xavier(1024, 1)) | ||
|
||
# out2 | ||
self._conv_o2 = ConvLayer(528, 128, 1) | ||
self._fc_o2 = Linear(1152, 1024, weight_attr=xavier(2048, 1)) | ||
self._drop_o2 = Dropout(p=0.7, mode="downscale_in_infer") | ||
self._out2 = Linear(1024, num_classes, weight_attr=xavier(1024, 1)) | ||
|
||
def forward(self, inputs): | ||
x = self._conv(inputs) | ||
x = self._pool(x) | ||
x = self._conv_1(x) | ||
x = self._conv_2(x) | ||
x = self._pool(x) | ||
|
||
x = self._ince3a(x) | ||
x = self._ince3b(x) | ||
x = self._pool(x) | ||
|
||
ince4a = self._ince4a(x) | ||
x = self._ince4b(ince4a) | ||
x = self._ince4c(x) | ||
ince4d = self._ince4d(x) | ||
x = self._ince4e(ince4d) | ||
x = self._pool(x) | ||
|
||
x = self._ince5a(x) | ||
ince5b = self._ince5b(x) | ||
|
||
out, out1, out2 = ince5b, ince4a, ince4d | ||
|
||
if self.with_pool: | ||
out = self._pool_5(out) | ||
out1 = self._pool_o1(out1) | ||
out2 = self._pool_o2(out2) | ||
|
||
if self.num_classes > 0: | ||
out = self._drop(out) | ||
out = paddle.squeeze(out, axis=[2, 3]) | ||
out = self._fc_out(out) | ||
|
||
out1 = self._conv_o1(out1) | ||
out1 = paddle.flatten(out1, start_axis=1, stop_axis=-1) | ||
out1 = self._fc_o1(out1) | ||
out1 = F.relu(out1) | ||
out1 = self._drop_o1(out1) | ||
out1 = self._out1(out1) | ||
|
||
out2 = self._conv_o2(out2) | ||
out2 = paddle.flatten(out2, start_axis=1, stop_axis=-1) | ||
out2 = self._fc_o2(out2) | ||
out2 = self._drop_o2(out2) | ||
out2 = self._out2(out2) | ||
|
||
return [out, out1, out2] | ||
|
||
|
||
def googlenet(pretrained=False, **kwargs): | ||
"""GoogLeNet (Inception v1) model architecture from | ||
`"Going Deeper with Convolutions" <https://arxiv.org/pdf/1409.4842.pdf>`_ | ||
Args: | ||
pretrained (bool): If True, returns a model pre-trained on ImageNet | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.vision.models import googlenet | ||
# build model | ||
model = googlenet() | ||
# build model and load imagenet pretrained weight | ||
# model = googlenet(pretrained=True) | ||
x = paddle.rand([1, 3, 224, 224]) | ||
out, out1, out2 = model(x) | ||
print(out.shape) | ||
""" | ||
model = GoogLeNet(**kwargs) | ||
arch = "googlenet" | ||
if pretrained: | ||
assert ( | ||
arch in model_urls | ||
), "{} model do not have a pretrained model now, you should set pretrained=False".format( | ||
arch) | ||
weight_path = get_weights_path_from_url(model_urls[arch][0], | ||
model_urls[arch][1]) | ||
|
||
param = paddle.load(weight_path) | ||
model.set_dict(param) | ||
return model |