-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
18 changed files
with
716 additions
and
43 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
class AbsPrimOp : public framework::OperatorBase { | ||
public: | ||
AbsPrimOp(const std::string &type, | ||
const framework::VariableNameMap &inputs, | ||
const framework::VariableNameMap &outputs, | ||
const framework::AttributeMap &attrs) | ||
: framework::OperatorBase(type, inputs, outputs, attrs) {} | ||
void RunImpl(const framework::Scope &scope, | ||
const platform::Place &dev_place) const override { | ||
PADDLE_THROW(platform::errors::Unimplemented( | ||
"Prim operator abs_p should not be excuted directly")); | ||
} | ||
}; | ||
|
||
class AbsPrimOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("X", "(Tensor), The input tensor of abs_p op."); | ||
AddOutput("Y", "(Tensor), The output tensor of abs_p op."); | ||
AddComment(R"DOC(Autograd primitive abs_p operator.)DOC"); | ||
} | ||
}; | ||
|
||
class AbsPrimOpShapeInference : public framework::InferShapeBase { | ||
public: | ||
void operator()(framework::InferShapeContext *ctx) const override { | ||
framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; | ||
framework::InferShapeVarPtr y_var_ptr = ctx->GetOutputVarPtrs("Y")[0]; | ||
framework::VarDesc *x_var = PADDLE_GET(framework::VarDesc *, x_var_ptr); | ||
PADDLE_GET(framework::VarDesc *, y_var_ptr)->SetShape(x_var->GetShape()); | ||
} | ||
}; | ||
|
||
class AbsPrimOpVarTypeInference | ||
: public framework::StaticGraphVarTypeInference { | ||
public: | ||
void operator()(framework::InferVarTypeContext *ctx) const override { | ||
auto x_name = Input(ctx, "X")[0]; | ||
auto y_name = Output(ctx, "Y")[0]; | ||
SetType(ctx, y_name, GetType(ctx, x_name)); | ||
SetDataType(ctx, y_name, GetDataType(ctx, x_name)); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OPERATOR(abs_p, | ||
paddle::operators::AbsPrimOp, | ||
paddle::operators::AbsPrimOpMaker, | ||
paddle::operators::AbsPrimOpShapeInference, | ||
paddle::operators::AbsPrimOpVarTypeInference); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
class GePrimOp : public framework::OperatorBase { | ||
public: | ||
GePrimOp(const std::string &type, | ||
const framework::VariableNameMap &inputs, | ||
const framework::VariableNameMap &outputs, | ||
const framework::AttributeMap &attrs) | ||
: framework::OperatorBase(type, inputs, outputs, attrs) {} | ||
void RunImpl(const framework::Scope &scope, | ||
const platform::Place &dev_place) const override { | ||
PADDLE_THROW(platform::errors::Unimplemented( | ||
"Prim operator ge_p should not be excuted directly")); | ||
} | ||
}; | ||
|
||
class GePrimOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("X", "(Tensor), The input tensor of ge_p op."); | ||
AddInput("Y", "(Tensor), The input tensor of ge_p op."); | ||
AddOutput("Z", "(Tensor), The output tensor of ge_p op."); | ||
AddComment(R"DOC( | ||
Autograd primitive ge_p operator. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class GePrimOpShapeInference : public framework::InferShapeBase { | ||
public: | ||
void operator()(framework::InferShapeContext *ctx) const override { | ||
framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; | ||
framework::InferShapeVarPtr y_var_ptr = ctx->GetInputVarPtrs("Y")[0]; | ||
framework::InferShapeVarPtr z_var_ptr = ctx->GetOutputVarPtrs("Z")[0]; | ||
|
||
framework::VarDesc *x_var = PADDLE_GET(framework::VarDesc *, x_var_ptr); | ||
framework::VarDesc *y_var = PADDLE_GET(framework::VarDesc *, y_var_ptr); | ||
auto x_shape = x_var->GetShape(); | ||
auto y_shape = y_var->GetShape(); | ||
size_t x_rank = x_shape.size(); | ||
size_t y_rank = y_shape.size(); | ||
PADDLE_ENFORCE_EQ(x_rank, | ||
y_rank, | ||
platform::errors::InvalidArgument( | ||
"The dimensions of two input tensor should be same, " | ||
"but get %d and %d", | ||
x_rank, | ||
y_rank)); | ||
for (size_t i = 0; i < x_rank; ++i) { | ||
PADDLE_ENFORCE_EQ( | ||
x_shape[i], | ||
y_shape[i], | ||
platform::errors::InvalidArgument( | ||
"The shape of two input tensor at dimension %d should be same, " | ||
"but get %d and %d", | ||
i, | ||
x_shape[i], | ||
y_shape[i])); | ||
} | ||
|
||
PADDLE_GET(framework::VarDesc *, z_var_ptr)->SetShape(x_shape); | ||
} | ||
}; | ||
|
||
class GePrimOpVarTypeInference : public framework::StaticGraphVarTypeInference { | ||
public: | ||
void operator()(framework::InferVarTypeContext *ctx) const override { | ||
auto x_name = Input(ctx, "X")[0]; | ||
auto y_name = Input(ctx, "Y")[0]; | ||
auto z_name = Output(ctx, "Z")[0]; | ||
auto x_type = GetType(ctx, x_name); | ||
auto y_type = GetType(ctx, y_name); | ||
auto x_dtype = GetDataType(ctx, x_name); | ||
auto y_dtype = GetDataType(ctx, y_name); | ||
PADDLE_ENFORCE_EQ(x_type, | ||
y_type, | ||
platform::errors::InvalidArgument( | ||
"The type of two input tensor should be same, " | ||
"but get %d and %d", | ||
x_type, | ||
y_type)); | ||
PADDLE_ENFORCE_EQ(x_dtype, | ||
y_dtype, | ||
platform::errors::InvalidArgument( | ||
"The datatype of two input tensor should be same, " | ||
"but get %d and %d", | ||
x_dtype, | ||
y_dtype)); | ||
|
||
SetType(ctx, z_name, x_type); | ||
SetDataType(ctx, z_name, framework::proto::VarType::BOOL); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OPERATOR(ge_p, | ||
paddle::operators::GePrimOp, | ||
paddle::operators::GePrimOpMaker, | ||
paddle::operators::GePrimOpShapeInference, | ||
paddle::operators::GePrimOpVarTypeInference); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
class GtPrimOp : public framework::OperatorBase { | ||
public: | ||
GtPrimOp(const std::string &type, | ||
const framework::VariableNameMap &inputs, | ||
const framework::VariableNameMap &outputs, | ||
const framework::AttributeMap &attrs) | ||
: framework::OperatorBase(type, inputs, outputs, attrs) {} | ||
void RunImpl(const framework::Scope &scope, | ||
const platform::Place &dev_place) const override { | ||
PADDLE_THROW(platform::errors::Unimplemented( | ||
"Prim operator gt_p should not be excuted directly")); | ||
} | ||
}; | ||
|
||
class GtPrimOpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("X", "(Tensor), The input tensor of gt_p op."); | ||
AddInput("Y", "(Tensor), The input tensor of gt_p op."); | ||
AddOutput("Z", "(Tensor), The output tensor of gt_p op."); | ||
AddComment(R"DOC( | ||
Autograd primitive gt_p operator. | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class GtPrimOpShapeInference : public framework::InferShapeBase { | ||
public: | ||
void operator()(framework::InferShapeContext *ctx) const override { | ||
framework::InferShapeVarPtr x_var_ptr = ctx->GetInputVarPtrs("X")[0]; | ||
framework::InferShapeVarPtr y_var_ptr = ctx->GetInputVarPtrs("Y")[0]; | ||
framework::InferShapeVarPtr z_var_ptr = ctx->GetOutputVarPtrs("Z")[0]; | ||
|
||
framework::VarDesc *x_var = PADDLE_GET(framework::VarDesc *, x_var_ptr); | ||
framework::VarDesc *y_var = PADDLE_GET(framework::VarDesc *, y_var_ptr); | ||
auto x_shape = x_var->GetShape(); | ||
auto y_shape = y_var->GetShape(); | ||
size_t x_rank = x_shape.size(); | ||
size_t y_rank = y_shape.size(); | ||
PADDLE_ENFORCE_EQ(x_rank, | ||
y_rank, | ||
platform::errors::InvalidArgument( | ||
"The dimensions of two input tensor should be same, " | ||
"but get %d and %d", | ||
x_rank, | ||
y_rank)); | ||
for (size_t i = 0; i < x_rank; ++i) { | ||
PADDLE_ENFORCE_EQ( | ||
x_shape[i], | ||
y_shape[i], | ||
platform::errors::InvalidArgument( | ||
"The shape of two input tensor at dimension %d should be same, " | ||
"but get %d and %d", | ||
i, | ||
x_shape[i], | ||
y_shape[i])); | ||
} | ||
|
||
PADDLE_GET(framework::VarDesc *, z_var_ptr)->SetShape(x_shape); | ||
} | ||
}; | ||
|
||
class GtPrimOpVarTypeInference : public framework::StaticGraphVarTypeInference { | ||
public: | ||
void operator()(framework::InferVarTypeContext *ctx) const override { | ||
auto x_name = Input(ctx, "X")[0]; | ||
auto y_name = Input(ctx, "Y")[0]; | ||
auto z_name = Output(ctx, "Z")[0]; | ||
auto x_type = GetType(ctx, x_name); | ||
auto y_type = GetType(ctx, y_name); | ||
auto x_dtype = GetDataType(ctx, x_name); | ||
auto y_dtype = GetDataType(ctx, y_name); | ||
PADDLE_ENFORCE_EQ(x_type, | ||
y_type, | ||
platform::errors::InvalidArgument( | ||
"The type of two input tensor should be same, " | ||
"but get %d and %d", | ||
x_type, | ||
y_type)); | ||
PADDLE_ENFORCE_EQ(x_dtype, | ||
y_dtype, | ||
platform::errors::InvalidArgument( | ||
"The datatype of two input tensor should be same, " | ||
"but get %d and %d", | ||
x_dtype, | ||
y_dtype)); | ||
|
||
SetType(ctx, z_name, x_type); | ||
SetDataType(ctx, z_name, framework::proto::VarType::BOOL); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
REGISTER_OPERATOR(gt_p, | ||
paddle::operators::GtPrimOp, | ||
paddle::operators::GtPrimOpMaker, | ||
paddle::operators::GtPrimOpShapeInference, | ||
paddle::operators::GtPrimOpVarTypeInference); |
Oops, something went wrong.