-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add atan2_op * fix
- Loading branch information
Showing
7 changed files
with
528 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,138 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/operators/atan2_op.h" | ||
|
||
#include <memory> | ||
#include <string> | ||
#include <unordered_map> | ||
#include <vector> | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
class Atan2Op : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
|
||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
OP_INOUT_CHECK(ctx->HasInput("X1"), "Input", "X1", "atan2"); | ||
OP_INOUT_CHECK(ctx->HasInput("X2"), "Input", "X2", "atan2"); | ||
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "atan2"); | ||
|
||
auto in_dims = ctx->GetInputDim("X1"); | ||
|
||
ctx->SetOutputDim("Out", in_dims); | ||
} | ||
}; | ||
|
||
class Atan2OpMaker : public framework::OpProtoAndCheckerMaker { | ||
public: | ||
void Make() override { | ||
AddInput("X1", "(Tensor), The input tensor of atan2 op."); | ||
AddInput("X2", "(Tensor), The input tensor of atan2 op."); | ||
AddOutput("Out", "(Tensor), The output tensor of atan2 op."); | ||
AddComment(R"DOC( | ||
Atan2 Operator. | ||
This operator is used to perform elementwise atan2 for input $X1$, $X2$. | ||
$$out = atan2(x1, x2)$$ | ||
)DOC"); | ||
} | ||
}; | ||
|
||
class Atan2GradOp : public framework::OperatorWithKernel { | ||
public: | ||
using framework::OperatorWithKernel::OperatorWithKernel; | ||
void InferShape(framework::InferShapeContext* ctx) const override { | ||
OP_INOUT_CHECK(ctx->HasInput("X1"), "Input", "X1", "Atan2Grad"); | ||
OP_INOUT_CHECK(ctx->HasInput("X2"), "Input", "X2", "Atan2Grad"); | ||
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", | ||
"Out@Grad", "Atan2Grad"); | ||
|
||
auto x1_grad_name = framework::GradVarName("X1"); | ||
auto x2_grad_name = framework::GradVarName("X2"); | ||
auto dout_dims = ctx->GetInputDim(framework::GradVarName("Out")); | ||
|
||
if (ctx->HasOutput(x1_grad_name)) { | ||
ctx->SetOutputDim(framework::GradVarName("X1"), dout_dims); | ||
} | ||
if (ctx->HasOutput(x2_grad_name)) { | ||
ctx->SetOutputDim(framework::GradVarName("X2"), dout_dims); | ||
} | ||
} | ||
|
||
protected: | ||
framework::OpKernelType GetExpectedKernelType( | ||
const framework::ExecutionContext& ctx) const override { | ||
auto dtype = OperatorWithKernel::IndicateVarDataType(ctx, "X1"); | ||
return framework::OpKernelType(dtype, ctx.GetPlace()); | ||
} | ||
}; | ||
|
||
template <typename T> | ||
class Atan2GradMaker : public framework::SingleGradOpMaker<T> { | ||
public: | ||
using framework::SingleGradOpMaker<T>::SingleGradOpMaker; | ||
|
||
void Apply(GradOpPtr<T> retv) const override { | ||
retv->SetType("atan2_grad"); | ||
retv->SetInput("X1", this->Input("X1")); | ||
retv->SetInput("X2", this->Input("X2")); | ||
retv->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); | ||
retv->SetAttrMap(this->Attrs()); | ||
retv->SetOutput(framework::GradVarName("X1"), this->InputGrad("X1")); | ||
retv->SetOutput(framework::GradVarName("X2"), this->InputGrad("X2")); | ||
} | ||
}; | ||
|
||
class Atan2OpVarTypeInference : public framework::VarTypeInference { | ||
public: | ||
void operator()(framework::InferVarTypeContext* ctx) const override { | ||
auto type = ctx->GetInputDataType("X1"); | ||
if (ctx->GetInputDataType("X1") == framework::proto::VarType::INT32 || | ||
ctx->GetInputDataType("X1") == framework::proto::VarType::INT64 || | ||
ctx->GetInputDataType("X2") == framework::proto::VarType::INT32 || | ||
ctx->GetInputDataType("X2") == framework::proto::VarType::INT64) { | ||
type = framework::proto::VarType::FP64; | ||
} | ||
ctx->SetOutputDataType("Out", type); | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OPERATOR(atan2, ops::Atan2Op, ops::Atan2OpMaker, | ||
ops::Atan2GradMaker<paddle::framework::OpDesc>, | ||
ops::Atan2GradMaker<paddle::imperative::OpBase>, | ||
ops::Atan2OpVarTypeInference); | ||
|
||
REGISTER_OPERATOR(atan2_grad, ops::Atan2GradOp); | ||
|
||
REGISTER_OP_CPU_KERNEL( | ||
atan2, ops::Atan2Kernel<paddle::platform::CPUDeviceContext, int32_t>, | ||
ops::Atan2Kernel<paddle::platform::CPUDeviceContext, int64_t>, | ||
ops::Atan2Kernel<paddle::platform::CPUDeviceContext, float>, | ||
ops::Atan2Kernel<paddle::platform::CPUDeviceContext, double>, | ||
ops::Atan2Kernel<paddle::platform::CPUDeviceContext, | ||
paddle::platform::float16>); | ||
|
||
REGISTER_OP_CPU_KERNEL( | ||
atan2_grad, ops::Atan2GradKernel<paddle::platform::CPUDeviceContext, float>, | ||
ops::Atan2GradKernel<paddle::platform::CPUDeviceContext, double>, | ||
ops::Atan2GradKernel<paddle::platform::CPUDeviceContext, | ||
paddle::platform::float16>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "paddle/fluid/operators/atan2_op.h" | ||
|
||
namespace ops = paddle::operators; | ||
REGISTER_OP_CUDA_KERNEL( | ||
atan2, ops::Atan2Kernel<paddle::platform::CUDADeviceContext, int32_t>, | ||
ops::Atan2Kernel<paddle::platform::CUDADeviceContext, int64_t>, | ||
ops::Atan2Kernel<paddle::platform::CUDADeviceContext, float>, | ||
ops::Atan2Kernel<paddle::platform::CUDADeviceContext, double>, | ||
ops::Atan2Kernel<paddle::platform::CUDADeviceContext, | ||
paddle::platform::float16>); | ||
|
||
REGISTER_OP_CUDA_KERNEL( | ||
atan2_grad, | ||
ops::Atan2GradKernel<paddle::platform::CUDADeviceContext, float>, | ||
ops::Atan2GradKernel<paddle::platform::CUDADeviceContext, double>, | ||
ops::Atan2GradKernel<paddle::platform::CUDADeviceContext, | ||
paddle::platform::float16>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,168 @@ | ||
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#pragma once | ||
|
||
#include "paddle/fluid/framework/eigen.h" | ||
#include "paddle/fluid/framework/op_registry.h" | ||
#include "paddle/fluid/framework/operator.h" | ||
#include "paddle/fluid/operators/math/blas.h" | ||
#include "paddle/fluid/platform/enforce.h" | ||
#include "paddle/fluid/platform/float16.h" | ||
#include "paddle/fluid/platform/for_range.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
using Tensor = framework::Tensor; | ||
using framework::To32BitIndex; | ||
|
||
template <typename T> | ||
struct Atan2Out { | ||
using type = T; | ||
}; | ||
|
||
template <> | ||
struct Atan2Out<int32_t> { | ||
using type = double; | ||
}; | ||
|
||
template <> | ||
struct Atan2Out<int64_t> { | ||
using type = double; | ||
}; | ||
|
||
template <typename T> | ||
struct Atan2Functor { | ||
Atan2Functor(const T* x1, const T* x2, typename Atan2Out<T>::type* out, | ||
int64_t numel) | ||
: x1_(x1), x2_(x2), out_(out), numel_(numel) {} | ||
|
||
HOSTDEVICE void operator()(int64_t idx) const { | ||
out_[idx] = static_cast<typename Atan2Out<T>::type>( | ||
::atan2f(static_cast<float>(x1_[idx]), static_cast<float>(x2_[idx]))); | ||
} | ||
|
||
const T* x1_; | ||
const T* x2_; | ||
typename Atan2Out<T>::type* out_; | ||
int64_t numel_; | ||
}; | ||
|
||
template <> | ||
struct Atan2Functor<double> { | ||
Atan2Functor(const double* x1, const double* x2, double* out, int64_t numel) | ||
: x1_(x1), x2_(x2), out_(out), numel_(numel) {} | ||
|
||
HOSTDEVICE void operator()(int64_t idx) const { | ||
out_[idx] = ::atan2(x1_[idx], x2_[idx]); | ||
} | ||
|
||
const double* x1_; | ||
const double* x2_; | ||
double* out_; | ||
int64_t numel_; | ||
}; | ||
|
||
// dx1 = dout * x2 / ((x1)^2 + (x2)^2) | ||
// dx2 = - dout * x1 / ((x1)^2 + (x2)^2) | ||
template <typename T> | ||
struct Atan2GradFunctor { | ||
Atan2GradFunctor(const T* x1, const T* x2, const T* dout, T* dx1, T* dx2, | ||
int64_t numel) | ||
: x1_(x1), x2_(x2), dout_(dout), dx1_(dx1), dx2_(dx2), numel_(numel) {} | ||
|
||
HOSTDEVICE void operator()(int64_t idx) const { | ||
float x1 = static_cast<float>(x1_[idx]); | ||
float x2 = static_cast<float>(x2_[idx]); | ||
float x = x1 * x1 + x2 * x2; | ||
dx1_[idx] = static_cast<T>(static_cast<float>(dout_[idx]) * x2 / x); | ||
dx2_[idx] = static_cast<T>(-static_cast<float>(dout_[idx]) * x1 / x); | ||
} | ||
|
||
const T* x1_; | ||
const T* x2_; | ||
const T* dout_; | ||
T* dx1_; | ||
T* dx2_; | ||
int64_t numel_; | ||
}; | ||
|
||
template <> | ||
struct Atan2GradFunctor<double> { | ||
Atan2GradFunctor(const double* x1, const double* x2, const double* dout, | ||
double* dx1, double* dx2, int64_t numel) | ||
: x1_(x1), x2_(x2), dout_(dout), dx1_(dx1), dx2_(dx2), numel_(numel) {} | ||
|
||
HOSTDEVICE void operator()(int64_t idx) const { | ||
auto x = x1_[idx] * x1_[idx] + x2_[idx] * x2_[idx]; | ||
dx1_[idx] = dout_[idx] * x2_[idx] / x; | ||
dx2_[idx] = -dout_[idx] * x1_[idx] / x; | ||
} | ||
|
||
const double* x1_; | ||
const double* x2_; | ||
const double* dout_; | ||
double* dx1_; | ||
double* dx2_; | ||
int64_t numel_; | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class Atan2Kernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const override { | ||
const Tensor* X1 = context.Input<Tensor>("X1"); | ||
const Tensor* X2 = context.Input<Tensor>("X2"); | ||
Tensor* Out = context.Output<Tensor>("Out"); | ||
|
||
auto numel = X1->numel(); | ||
auto x1 = X1->data<T>(); | ||
auto x2 = X2->data<T>(); | ||
auto out = Out->mutable_data<typename Atan2Out<T>::type>( | ||
context.GetPlace(), size_t(numel * sizeof(typename Atan2Out<T>::type))); | ||
auto& dev_ctx = context.template device_context<DeviceContext>(); | ||
|
||
platform::ForRange<DeviceContext> for_range(dev_ctx, numel); | ||
Atan2Functor<T> functor(x1, x2, out, numel); | ||
for_range(functor); | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class Atan2GradKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& context) const { | ||
const Tensor* X1 = context.Input<Tensor>("X1"); | ||
const Tensor* X2 = context.Input<Tensor>("X2"); | ||
const Tensor* dOut = context.Input<Tensor>(framework::GradVarName("Out")); | ||
Tensor* dX1 = context.Output<Tensor>(framework::GradVarName("X1")); | ||
Tensor* dX2 = context.Output<Tensor>(framework::GradVarName("X2")); | ||
|
||
auto numel = X1->numel(); | ||
auto x1 = X1->data<T>(); | ||
auto x2 = X2->data<T>(); | ||
auto dout = dOut->data<T>(); | ||
auto dx1 = | ||
dX1->mutable_data<T>(context.GetPlace(), size_t(numel * sizeof(T))); | ||
auto dx2 = | ||
dX2->mutable_data<T>(context.GetPlace(), size_t(numel * sizeof(T))); | ||
auto& dev_ctx = context.template device_context<DeviceContext>(); | ||
|
||
platform::ForRange<DeviceContext> for_range(dev_ctx, numel); | ||
Atan2GradFunctor<T> functor(x1, x2, dout, dx1, dx2, numel); | ||
for_range(functor); | ||
} | ||
}; | ||
} // namespace operators | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.