-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add rmsprop npu * add argsort npu * add argsort npu * modify according to review * modify sharedatawith according to review * modify reshape according to review * rm dygraph=false
- Loading branch information
Showing
2 changed files
with
476 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,261 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "paddle/fluid/operators/argsort_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class ArgsortNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* input = ctx.Input<framework::Tensor>("X"); | ||
auto* output = ctx.Output<framework::Tensor>("Out"); | ||
output->mutable_data<T>(ctx.GetPlace()); | ||
auto* indices = ctx.Output<framework::Tensor>("Indices"); | ||
indices->mutable_data<int32_t>(ctx.GetPlace()); | ||
|
||
int32_t axis = ctx.Attr<int>("axis"); | ||
auto in_dims = indices->dims(); | ||
axis = (axis < 0) ? (in_dims.size() + axis) : axis; | ||
bool descending = ctx.Attr<bool>("descending"); | ||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
framework::NPUAttributeMap sort_attr_input = { | ||
{"axis", static_cast<int32_t>(-1)}, {"descending", descending}}; | ||
|
||
if (axis == -1 || axis + 1 == in_dims.size()) { | ||
const auto& sort_runner = | ||
NpuOpRunner("Sort", {*input}, {*output, *indices}, sort_attr_input); | ||
sort_runner.Run(stream); | ||
} else { | ||
// transpose | ||
std::vector<int> trans; | ||
for (int i = 0; i < axis; i++) { | ||
trans.push_back(i); | ||
} | ||
trans.push_back(in_dims.size() - 1); | ||
for (int i = axis + 1; i < in_dims.size() - 1; i++) { | ||
trans.push_back(i); | ||
} | ||
trans.push_back(axis); | ||
framework::DDim trans_dims(in_dims); | ||
for (size_t i = 0; i < trans.size(); i++) { | ||
trans_dims[i] = in_dims[trans[i]]; | ||
} | ||
framework::NPUAttributeMap trans_attr_input = {{"perm", trans}}; | ||
Tensor trans_input; | ||
trans_input.mutable_data<T>(trans_dims, ctx.GetPlace()); | ||
const auto& trans_input_runner = | ||
NpuOpRunner("TransposeD", {*input}, {trans_input}, trans_attr_input); | ||
trans_input_runner.Run(stream); | ||
Tensor trans_indices; | ||
trans_indices.mutable_data<int32_t>(trans_dims, ctx.GetPlace()); | ||
const auto& trans_indice_runner = NpuOpRunner( | ||
"TransposeD", {*indices}, {trans_indices}, trans_attr_input); | ||
trans_indice_runner.Run(stream); | ||
Tensor trans_output; | ||
trans_output.mutable_data<T>(trans_dims, ctx.GetPlace()); | ||
const auto& trans_output_runner = NpuOpRunner( | ||
"TransposeD", {*output}, {trans_output}, trans_attr_input); | ||
trans_output_runner.Run(stream); | ||
const auto& sort_runner = | ||
NpuOpRunner("Sort", {trans_input}, {trans_output, trans_indices}, | ||
sort_attr_input); | ||
sort_runner.Run(stream); | ||
// transpose back | ||
const auto& trans_indices_back_runner = NpuOpRunner( | ||
"TransposeD", {trans_indices}, {*indices}, trans_attr_input); | ||
trans_indices_back_runner.Run(stream); | ||
const auto& trans_output_back_runner = NpuOpRunner( | ||
"TransposeD", {trans_output}, {*output}, trans_attr_input); | ||
trans_output_back_runner.Run(stream); | ||
} | ||
} | ||
}; | ||
|
||
template <typename Type> | ||
static void ReshapeNPU(const framework::Tensor* input, | ||
const std::vector<Type>& input_shapes, | ||
framework::Tensor* output) { | ||
output->ShareDataWith(*input); | ||
output->Resize(framework::make_ddim(std::move(input_shapes))); | ||
} | ||
|
||
template <typename T, typename Type> | ||
static void FullAssignNPU(const framework::ExecutionContext& ctx, | ||
Type ind_lastdim, Type outer_dim, | ||
const framework::DDim& trans_dims, | ||
const framework::Tensor* input, | ||
const framework::Tensor* indices, | ||
framework::Tensor* t_out) { | ||
// reshape input | ||
Type input_shape = ind_lastdim * outer_dim; | ||
std::vector<Type> input_shapes = {input_shape}; | ||
Tensor input_reshape_tensor(input->type()); | ||
ReshapeNPU<Type>(input, input_shapes, &input_reshape_tensor); | ||
// reshape index | ||
std::vector<Type> index_shapes = {outer_dim, ind_lastdim}; | ||
framework::DDim ind_2d = framework::make_ddim({outer_dim, ind_lastdim}); | ||
Tensor ind_2d_tensor(indices->type()); | ||
ReshapeNPU<Type>(indices, index_shapes, &ind_2d_tensor); | ||
// range_flatten_index | ||
std::vector<int32_t> range_flatten_index; | ||
for (Type i = 0; i < input_shape; i += ind_lastdim) { | ||
range_flatten_index.push_back(static_cast<int32_t>(i)); | ||
} | ||
Tensor range_flatten_index_tensor(framework::proto::VarType::INT32); | ||
range_flatten_index_tensor.Resize(framework::make_ddim({outer_dim})); | ||
range_flatten_index_tensor.mutable_data<int32_t>( | ||
{static_cast<int>(range_flatten_index.size())}, ctx.GetPlace()); | ||
TensorFromVector(range_flatten_index, ctx.device_context(), | ||
&range_flatten_index_tensor); | ||
Tensor range_flatten_index_expand_tensor(range_flatten_index_tensor.type()); | ||
std::vector<Type> flatten_shape = {outer_dim, 1}; | ||
ReshapeNPU<Type>(&range_flatten_index_tensor, flatten_shape, | ||
&range_flatten_index_expand_tensor); | ||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
Tensor ind_2d_add_tensor; | ||
ind_2d_add_tensor.mutable_data<int32_t>(ind_2d, ctx.GetPlace()); | ||
const auto& runner_ind_2d_tensor = NpuOpRunner( | ||
std::string("Add"), {ind_2d_tensor, range_flatten_index_expand_tensor}, | ||
{ind_2d_add_tensor}, {}); | ||
runner_ind_2d_tensor.Run(stream); | ||
Tensor ind_reshape_tensor(ind_2d_add_tensor.type()); | ||
ReshapeNPU<Type>(&ind_2d_add_tensor, input_shapes, &ind_reshape_tensor); | ||
Tensor ind_reshape_expand_tensor(ind_reshape_tensor.type()); | ||
std::vector<Type> ind_shape = {input_shape, 1}; | ||
ReshapeNPU<Type>(&ind_reshape_tensor, ind_shape, &ind_reshape_expand_tensor); | ||
// expand_index | ||
Tensor input_scatter_tensor; | ||
input_scatter_tensor.Resize({input_shape}); | ||
input_scatter_tensor.mutable_data<T>(ctx.GetPlace()); | ||
Tensor input_scatter_tensor_ori; | ||
input_scatter_tensor_ori.Resize({input_shape}); | ||
input_scatter_tensor_ori.mutable_data<T>(ctx.GetPlace()); | ||
std::vector<Type> trans_shapes; | ||
|
||
for (int i = 0; i < trans_dims.size(); i++) { | ||
trans_shapes.push_back(trans_dims[i]); | ||
} | ||
NpuOpRunner runner_scatter; | ||
runner_scatter.SetType("TensorScatterUpdate") | ||
.AddInput(input_scatter_tensor_ori) | ||
.AddInput(ind_reshape_expand_tensor) | ||
.AddInput(input_reshape_tensor) | ||
.AddOutput(input_scatter_tensor); | ||
runner_scatter.Run(stream); | ||
framework::TensorCopy(input_scatter_tensor, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), | ||
t_out); | ||
t_out->Resize(framework::make_ddim(trans_shapes)); | ||
} | ||
|
||
template <typename DeviceContext, typename T> | ||
class ArgsortGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* indices = ctx.Input<Tensor>("Indices"); | ||
auto* dX = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
auto* dO = ctx.Input<Tensor>(framework::GradVarName("Out")); | ||
int axis = ctx.Attr<int>("axis"); | ||
auto in_dims = indices->dims(); | ||
axis = (axis < 0) ? (in_dims.size() + axis) : axis; | ||
auto place = ctx.GetPlace(); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
dX->mutable_data<T>(ctx.GetPlace()); | ||
Tensor dxt; | ||
dxt.mutable_data<T>(dX->dims(), place); | ||
const auto& runner_flatten = | ||
NpuOpRunner(std::string("Flatten"), {*dX}, {dxt}, {}); | ||
runner_flatten.Run(stream); | ||
FillNpuTensorWithConstant<T>(&dxt, static_cast<T>(0)); | ||
if (dO->numel() == 0) return; | ||
// Do full assig n | ||
if (axis == -1 || axis + 1 == in_dims.size()) { | ||
const int64_t outer_dim = framework::product( | ||
framework::slice_ddim(in_dims, 0, in_dims.size() - 1)); | ||
const int64_t ind_lastdim = in_dims[in_dims.size() - 1]; | ||
FullAssignNPU<T, int64_t>(ctx, ind_lastdim, outer_dim, in_dims, dO, | ||
indices, dX); | ||
|
||
} else { | ||
// If not full assign do transpose | ||
std::vector<int> trans; | ||
for (int i = 0; i < axis; i++) { | ||
trans.push_back(i); | ||
} | ||
trans.push_back(in_dims.size() - 1); | ||
for (int i = axis + 1; i < in_dims.size() - 1; i++) { | ||
trans.push_back(i); | ||
} | ||
trans.push_back(axis); | ||
framework::DDim trans_dims(in_dims); | ||
for (size_t i = 0; i < trans.size(); i++) { | ||
trans_dims[i] = in_dims[trans[i]]; | ||
} | ||
std::vector<int> axis; | ||
for (size_t i = 0; i < trans.size(); i++) { | ||
axis.push_back(in_dims[trans[i]]); | ||
} | ||
framework::NPUAttributeMap attr_input = {{"perm", trans}}; | ||
Tensor trans_dO; | ||
trans_dO.mutable_data<T>(trans_dims, ctx.GetPlace()); | ||
Tensor trans_ind; | ||
trans_ind.mutable_data<int32_t>(trans_dims, ctx.GetPlace()); | ||
// Do transpose | ||
const auto& runner_transpose_dx = NpuOpRunner( | ||
std::string("TransposeD"), {*dO}, {trans_dO}, {attr_input}); | ||
runner_transpose_dx.Run(stream); | ||
const auto& runner_transpose_ind = NpuOpRunner( | ||
std::string("TransposeD"), {*indices}, {trans_ind}, {attr_input}); | ||
runner_transpose_ind.Run(stream); | ||
|
||
const int64_t outer_dim = framework::product( | ||
framework::slice_ddim(trans_dims, 0, trans_dims.size() - 1)); | ||
const int64_t ind_lastdim = trans_dims[trans_dims.size() - 1]; | ||
|
||
Tensor tmp_out; | ||
tmp_out.mutable_data<T>(trans_dims, ctx.GetPlace()); | ||
|
||
FullAssignNPU<T, int64_t>(ctx, ind_lastdim, outer_dim, trans_dims, | ||
&trans_dO, &trans_ind, &tmp_out); | ||
|
||
// transpose back | ||
const auto& runner_transpose_out = NpuOpRunner( | ||
std::string("TransposeD"), {tmp_out}, {*dX}, {attr_input}); | ||
runner_transpose_out.Run(stream); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
namespace plat = paddle::platform; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
argsort, ops::ArgsortNPUKernel<plat::NPUDeviceContext, float>, | ||
ops::ArgsortNPUKernel<plat::NPUDeviceContext, plat::float16>); | ||
|
||
REGISTER_OP_NPU_KERNEL(argsort_grad, | ||
ops::ArgsortGradNPUKernel<plat::NPUDeviceContext, float>, | ||
ops::ArgsortGradNPUKernel<plat::NPUDeviceContext, | ||
paddle::platform::float16>); |
Oops, something went wrong.