Skip to content

Commit

Permalink
[OPs] Bug fix, fix the segment mean for illegal syncthreads usage. (#…
Browse files Browse the repository at this point in the history
…32596)

* [OPs] Bug fix, fix the segment mean for illegal syncthreads usage.
  • Loading branch information
ZHUI committed Apr 27, 2021
1 parent 1515892 commit 9d8de1a
Showing 1 changed file with 78 additions and 38 deletions.
116 changes: 78 additions & 38 deletions paddle/fluid/operators/math/segment_pooling.cu
Original file line number Diff line number Diff line change
Expand Up @@ -25,14 +25,12 @@ namespace operators {
using Tensor = framework::Tensor;

template <typename T, typename Index, int DimTileSize>
__global__ void SegmentMeanCustomKernel(
const Index* segment_ids, const T* input, T* output, T* summed_ids,
const Index input_length_size, const Index inner_dim_size,
const Index output_length_size, const Index total_stripe_count) {
__global__ void SegmentSumIdsKernel(const Index* segment_ids, T* summed_ids,
const Index input_length_size,
const Index total_stripe_count) {
CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
const Index segment_offset = stripe_index % inner_dim_size;
const Index dim_index_base =
stripe_index / inner_dim_size * Index(DimTileSize);
const Index segment_offset = stripe_index;
const Index dim_index_base = stripe_index * Index(DimTileSize);
const Index actual_height =
min(Index(DimTileSize), input_length_size - dim_index_base);

Expand All @@ -41,53 +39,81 @@ __global__ void SegmentMeanCustomKernel(
if (dim_index_base > 0) {
last_segment_id = segment_ids[dim_index_base - 1];
}
if (segment_offset == 0) {
T sum = T(0);
for (Index j = 0; j < actual_height; j++) {
Index current_segment_id = segment_ids[dim_index_base + j];
// Note(ZHUI): following check may cause
// cudaErrorLaunchOutOfResources.
// PADDLE_ENFORCE(current_segment_id >= last_segment_id,
// "the segment ids should be sorted, but got "
// "segment_ids[%d]:%d > segment_ids[%d]:%d.",
// dim_index_base + j - 1, dim_index_base + j,
// last_segment_id, current_segment_id);

if (j > 0 && current_segment_id > last_segment_id) {
T sum = T(0);
for (Index j = 0; j < actual_height; j++) {
Index current_segment_id = segment_ids[dim_index_base + j];
PADDLE_ENFORCE(current_segment_id >= last_segment_id,
"the segment ids should be sorted, but got "
"segment_ids[%d]:%d > segment_ids[%d]:%d.",
dim_index_base + j - 1, dim_index_base + j,
last_segment_id, current_segment_id);
if (current_segment_id > last_segment_id) {
for (Index interval_id = last_segment_id + 1;
interval_id < current_segment_id; ++interval_id) {
*(summed_ids + interval_id) = 0;
}
if (j > 0) {
if (last_segment_id == first_segment_id) {
platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
} else {
*(summed_ids + last_segment_id) = sum;
}
sum = T(0);
}
sum += T(1);
last_segment_id = current_segment_id;
}
platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
sum += T(1);
last_segment_id = current_segment_id;
}
platform::CudaAtomicAdd(summed_ids + last_segment_id, sum);
}
}

template <typename T, typename Index, int DimTileSize>
__global__ void SegmentMeanKernel(const Index* segment_ids, const T* input,
T* output, T* summed_ids,
const Index input_length_size,
const Index inner_dim_size,
const Index output_length_size,
const Index total_stripe_count) {
CUDA_KERNEL_LOOP(stripe_index, total_stripe_count) {
const Index segment_offset = stripe_index % inner_dim_size;
const Index dim_index_base =
stripe_index / inner_dim_size * Index(DimTileSize);
const Index actual_height =
min(Index(DimTileSize), input_length_size - dim_index_base);

Index first_segment_id = segment_ids[dim_index_base];
Index last_segment_id = -1;
if (dim_index_base > 0) {
last_segment_id = segment_ids[dim_index_base - 1];
}
// ensure last_segment_id is the largest
last_segment_id = output_length_size;
__syncthreads();
T sum = T(0);
for (Index j = 0; j < actual_height; j++) {
Index current_segment_id = segment_ids[dim_index_base + j];
if (current_segment_id > last_segment_id) {
const Index output_index =
last_segment_id * inner_dim_size + segment_offset;
if (last_segment_id == first_segment_id) {
platform::CudaAtomicAdd(output + output_index,
sum / *(summed_ids + last_segment_id));
} else {
*(output + output_index) = sum / *(summed_ids + last_segment_id);
// reset the interval value which do not have corresponding ids.
for (Index interval_id = last_segment_id + 1;
interval_id < current_segment_id; ++interval_id) {
*(output + interval_id * inner_dim_size + segment_offset) = T(0);
}

if (j > 0) {
Index output_index =
last_segment_id * inner_dim_size + segment_offset;

if (last_segment_id == first_segment_id) {
platform::CudaAtomicAdd(output + output_index,
sum / *(summed_ids + last_segment_id));
} else {
*(output + output_index) = sum / *(summed_ids + last_segment_id);
}
sum = T(0);
}
sum = T(0);
}
sum += input[(dim_index_base + j) * inner_dim_size + segment_offset];
last_segment_id = current_segment_id;
}
const Index output_index =
last_segment_id * inner_dim_size + segment_offset;
Index output_index = last_segment_id * inner_dim_size + segment_offset;
platform::CudaAtomicAdd(output + output_index,
sum / *(summed_ids + last_segment_id));
}
Expand Down Expand Up @@ -122,7 +148,7 @@ __global__ void SegmentOpsKernel(const Index* segment_ids, const T* input,
// reset the interval value which do not have corresponding ids.
for (Index interval_id = last_segment_id + 1;
interval_id < current_segment_id; ++interval_id) {
*(output + interval_id * inner_dim_size + segment_offset) = 0;
*(output + interval_id * inner_dim_size + segment_offset) = T(0);
}
// don't update result when j=0
if (j > 0) {
Expand Down Expand Up @@ -272,11 +298,25 @@ class SegmentPoolFunctor<platform::CUDADeviceContext, T, IndexT> {
framework::Tensor* output,
framework::Tensor* summed_ids = nullptr,
const std::string pooltype = "SUM") {
if (pooltype == "MEAN") {
// Sum the segment id num first
T DimTileSize = 8;
auto input_length_size = segment_ids.numel();
auto total_stripe_count =
(input_length_size + DimTileSize - 1) / DimTileSize;
auto config = platform::GetGpuLaunchConfig1D(ctx, total_stripe_count);
SegmentSumIdsKernel<
T, IndexT, IndexT(8)><<<config.block_per_grid.x,
config.thread_per_block.x, 0, ctx.stream()>>>(
segment_ids.data<IndexT>(), summed_ids->data<T>(), input_length_size,
total_stripe_count);
}

auto h = ArrangeHelper<IndexT>(input.numel(), segment_ids.dims()[0],
output->dims()[0]);
auto config = platform::GetGpuLaunchConfig1D(ctx, h.total_stripe_count);
if (pooltype == "MEAN") {
SegmentMeanCustomKernel<
SegmentMeanKernel<
T, IndexT, IndexT(8)><<<config.block_per_grid.x,
config.thread_per_block.x, 0, ctx.stream()>>>(
segment_ids.data<IndexT>(), input.data<T>(), output->data<T>(),
Expand Down

1 comment on commit 9d8de1a

@paddle-bot-old
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Congratulation! Your pull request passed all required CI. You could ask reviewer(s) to approve and merge. 🎉

Please sign in to comment.