Skip to content

Commit

Permalink
Move reduceSum to elementwise_op_function.h (#9773)
Browse files Browse the repository at this point in the history
* add cuda_device_functions.h

* move reduceSum to elementwise_op_function.h
  • Loading branch information
chengduo authored and wangkuiyi committed Apr 10, 2018
1 parent b44b6a4 commit b1224da
Show file tree
Hide file tree
Showing 2 changed files with 75 additions and 73 deletions.
100 changes: 75 additions & 25 deletions paddle/fluid/operators/elementwise_op_function.h
Original file line number Diff line number Diff line change
Expand Up @@ -13,14 +13,15 @@ See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <algorithm>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/platform/transform.h"

#ifdef __NVCC__
#include <cuda.h>
#include <thrust/iterator/iterator_adaptor.h>
#include "paddle/fluid/platform/cuda_helper.h"
constexpr int ELEMWISE_MAX_BLOCK_DIM = 1024;
#endif

Expand All @@ -43,35 +44,35 @@ namespace operators {
*/
inline void get_mid_dims(const framework::DDim& x_dims,
const framework::DDim& y_dims, const int axis,
int& pre, int& n, int& post) {
pre = 1;
n = 1;
post = 1;
int* pre, int* n, int* post) {
*pre = 1;
*n = 1;
*post = 1;
for (int i = 0; i < axis; ++i) {
pre *= x_dims[i];
(*pre) *= x_dims[i];
}

for (int i = 0; i < y_dims.size(); ++i) {
PADDLE_ENFORCE_EQ(x_dims[i + axis], y_dims[i],
"Broadcast dimension mismatch.");
n *= y_dims[i];
(*n) *= y_dims[i];
}

for (int i = axis + y_dims.size(); i < x_dims.size(); ++i) {
post *= x_dims[i];
(*post) *= x_dims[i];
}
}

inline void trim_trailing_singular_dims(framework::DDim& dims) {
inline void trim_trailing_singular_dims(framework::DDim* dims) {
// Remove trailing dimensions of size 1 for y
auto actual_dims_size = dims.size();
auto actual_dims_size = dims->size();
for (; actual_dims_size != 0; --actual_dims_size) {
if (dims[actual_dims_size - 1] != 1) break;
if ((*dims)[actual_dims_size - 1] != 1) break;
}
if (actual_dims_size != dims.size()) {
auto actual_dims = framework::vectorize(dims);
if (actual_dims_size != dims->size()) {
auto actual_dims = framework::vectorize(*dims);
actual_dims.resize(actual_dims_size);
dims = framework::make_ddim(actual_dims);
*dims = framework::make_ddim(actual_dims);
}
}

Expand Down Expand Up @@ -159,7 +160,7 @@ class RowwiseTransformIterator<T, platform::CUDADeviceContext>
RowwiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
super_t;
HOSTDEVICE RowwiseTransformIterator(const T* x, int n)
: super_t(x), begin_(x), n_(n){};
: super_t(x), begin_(x), n_(n) {}
friend class thrust::iterator_core_access;

private:
Expand All @@ -179,7 +180,7 @@ class MidWiseTransformIterator<T, platform::CUDADeviceContext>
MidWiseTransformIterator<T, platform::CUDADeviceContext>, const T*>
super_t;
HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post)
: super_t(x), begin_(x), n_(n), post_(post){};
: super_t(x), begin_(x), n_(n), post_(post) {}
friend class thrust::iterator_core_access;

private:
Expand Down Expand Up @@ -333,6 +334,55 @@ static void ElemwiseGradBroadcast1CPU(const T* x, const T* y, const T* out,
}
}
#ifdef __NVCC__

// __shfl_down has been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template <typename T>
__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) {
return __shfl_down(val, delta);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif

template <typename T>
__device__ T reduceSum(T val, int tid, int len) {
// TODO(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__ T shm[32];
const int warpSize = 32;
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, tid < len);

for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);

if (tid < warpSize) shm[tid] = 0;

__syncthreads();

if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
}

CREATE_SHFL_MASK(mask, tid < warpSize);

if (tid < warpSize) {
val = shm[tid];
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);
}

return val;
}

template <typename T, typename DX_OP, typename DY_OP>
static __global__ void ElemwiseGradBroadcast1CUDAKernel(
const T* x, const T* y, const T* out, const T* dout, int h, int w,
Expand All @@ -355,7 +405,7 @@ static __global__ void ElemwiseGradBroadcast1CUDAKernel(

if (dy) {
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
val = platform::reduceSum(val, tid, h);
val = reduceSum(val, tid, h);
if (threadIdx.x == 0) {
dy[j] = val;
}
Expand Down Expand Up @@ -432,7 +482,7 @@ static __global__ void ElemwiseGradBroadcast2CUDAKernel(
if (dy) {
int h = pre * post;
h = h > ELEMWISE_MAX_BLOCK_DIM ? ELEMWISE_MAX_BLOCK_DIM : h;
val = platform::reduceSum(val, tid, h);
val = reduceSum(val, tid, h);
if (threadIdx.x == 0) {
dy[j] = val;
}
Expand Down Expand Up @@ -472,11 +522,11 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
auto y_dim = y.dims();

axis = (axis == -1 ? x_dim.size() - y_dim.size() : axis);
trim_trailing_singular_dims(y_dim);
trim_trailing_singular_dims(&y_dim);
axis = (y_dim.size() == 0) ? x_dim.size() : axis;

int pre, n, post;
get_mid_dims(x_dim, y_dim, axis, pre, n, post);
get_mid_dims(x_dim, y_dim, axis, &pre, &n, &post);
if (post == 1) {
int h = pre;
int w = n;
Expand Down Expand Up @@ -514,7 +564,7 @@ void ElemwiseGradCompute(const framework::ExecutionContext& ctx,
}
}
}
};
}

template <typename DeviceContext, typename T, typename functor,
typename broadcastfunctor, typename broadcast2functor>
Expand Down Expand Up @@ -543,11 +593,11 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx,
}

axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
trim_trailing_singular_dims(y_dims);
trim_trailing_singular_dims(&y_dims);
axis = (y_dims.size() == 0) ? x_dims.size() : axis;

int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

if (post == 1) {
broadcastfunctor f;
Expand Down Expand Up @@ -582,11 +632,11 @@ void ElementwiseComputeEx(const framework::ExecutionContext& ctx,
axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis);
PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
"Axis should be in range [0, x_dims)");
trim_trailing_singular_dims(y_dims);
trim_trailing_singular_dims(&y_dims);
axis = (y_dims.size() == 0) ? x_dims.size() : axis;

int pre, n, post;
get_mid_dims(x_dims, y_dims, axis, pre, n, post);
get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);
if (post == 1) {
functor.RunRowWise(n, pre);
return;
Expand Down
48 changes: 0 additions & 48 deletions paddle/fluid/platform/cuda_helper.h
Original file line number Diff line number Diff line change
Expand Up @@ -62,53 +62,5 @@ CUDA_ATOMIC_WRAPPER(Add, double) {
}
#endif

// __shfl_down has been deprecated as of CUDA 9.0.
#if CUDA_VERSION < 9000
template <typename T>
__forceinline__ __device__ T __shfl_down_sync(unsigned, T val, int delta) {
return __shfl_down(val, delta);
}
#define CREATE_SHFL_MASK(mask, predicate) mask = 0u;
#else
#define FULL_WARP_MASK 0xFFFFFFFF
#define CREATE_SHFL_MASK(mask, predicate) \
mask = __ballot_sync(FULL_WARP_MASK, (predicate))
#endif

template <typename T>
__device__ T reduceSum(T val, int tid, int len) {
// TODO(zcd): The warp size should be taken from the
// parameters of the GPU but not specified as 32 simply.
// To make the reduceSum more efficiently,
// I use Warp-Level Parallelism and assume the Warp size
// is 32 which may be different for different GPU,
// but most card's warp size is 32.
__shared__ T shm[32];
const int warpSize = 32;
unsigned mask = 0u;
CREATE_SHFL_MASK(mask, tid < len);

for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);

if (tid < warpSize) shm[tid] = 0;

__syncthreads();

if (tid % warpSize == 0) {
shm[tid / warpSize] = val;
}

CREATE_SHFL_MASK(mask, tid < warpSize);

if (tid < warpSize) {
val = shm[tid];
for (int offset = warpSize / 2; offset > 0; offset /= 2)
val += __shfl_down_sync(mask, val, offset);
}

return val;
}

} // namespace platform
} // namespace paddle

0 comments on commit b1224da

Please sign in to comment.