-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【Hackathon 4th No.11】 为 paddle 添加 Geometric Distribution API (#51224)
- Loading branch information
1 parent
8f5eae4
commit bca1b0c
Showing
5 changed files
with
1,042 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,343 @@ | ||
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import numbers | ||
|
||
import numpy as np | ||
|
||
import paddle | ||
from paddle.distribution import distribution, uniform | ||
from paddle.fluid import framework | ||
|
||
|
||
class Geometric(distribution.Distribution): | ||
r""" | ||
Geometric distribution parameterized by probs. | ||
In probability theory and statistics, the geometric distribution is one of | ||
discrete probability distributions, parameterized by one positive shape parameter, denoted by probs. | ||
In n Bernoulli trials, it takes k trials to get the probability of success for the first time. | ||
In detail, it is: the probability that the first k-1 times failed and the kth time succeeded. | ||
The geometric distribution is a special case of the Pascal distribution when r=1. | ||
The probability mass function (pmf) is | ||
.. math:: | ||
Pr(Y=k)=(1-p)^kp | ||
where k is number of trials performed and p is probability of success for each trial and k=0,1,2,3,4..., p belong to (0,1]. | ||
Args: | ||
probs (Real|Tensor): Probability parameter. | ||
The value of probs must be positive. When the parameter is a tensor, probs is probability of success for each trial. | ||
Returns: | ||
Geometric distribution for instantiation of probs. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom = Geometric(0.5) | ||
geom.mean | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [2.]) | ||
geom.variance | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [2.]) | ||
geom.stddev | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [1.41421354]) | ||
""" | ||
|
||
def __init__(self, probs): | ||
if isinstance(probs, (numbers.Real, paddle.Tensor, framework.Variable)): | ||
if isinstance(probs, numbers.Real): | ||
probs = paddle.full( | ||
shape=(), fill_value=probs, dtype=paddle.float32 | ||
) | ||
|
||
all_ones = paddle.full( | ||
shape=probs.shape, fill_value=1, dtype=probs.dtype | ||
) | ||
all_zeros = paddle.full( | ||
shape=probs.shape, fill_value=0, dtype=probs.dtype | ||
) | ||
all_false = paddle.full( | ||
shape=probs.shape, fill_value=False, dtype=bool | ||
) | ||
|
||
lessthen_0 = probs <= all_zeros | ||
morethen_1 = probs > all_ones | ||
|
||
else: | ||
raise TypeError( | ||
f"Expected type of probs is Number.Real|Tensor|framework.Variable, but got {type(probs)}" | ||
) | ||
|
||
if paddle.equal_all(lessthen_0, all_false) and paddle.equal_all( | ||
morethen_1, all_false | ||
): | ||
batch_shape = tuple(probs.shape) | ||
else: | ||
raise ValueError( | ||
"Expected parameter probs of distribution Geometric to satisfy the" | ||
"constraint Interval(lower_bound=0.0, upper_bound=1.0)" | ||
) | ||
|
||
self.probs = probs | ||
super().__init__(batch_shape) | ||
|
||
@property | ||
def mean(self): | ||
"""Mean of geometric distribution.""" | ||
return 1.0 / self.probs | ||
|
||
@property | ||
def variance(self): | ||
"""Variance of geometric distribution.""" | ||
return paddle.to_tensor( | ||
(1.0 / self.probs - 1.0) / self.probs, | ||
dtype=self.probs.dtype, | ||
) | ||
|
||
@property | ||
def stddev(self): | ||
"""Standard deviation of Geometric distribution.""" | ||
return paddle.sqrt(self.variance) | ||
|
||
def pmf(self, k): | ||
r"""Probability mass funciotn evaluated at k. | ||
.. math:: | ||
P(X=k) = (1-p)^{k-1} p, \quad k=1,2,3,\ldots | ||
Args: | ||
k (int): Value to be evaluated. | ||
Returns: | ||
Tensor: Probability. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom = Geometric(0.5) | ||
geom.pmf(2) | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [0.25000000]) | ||
""" | ||
if isinstance(k, (numbers.Integral, framework.Variable)): | ||
return paddle.pow((1.0 - self.probs), k - 1.0) * self.probs | ||
else: | ||
raise TypeError( | ||
f"Expected type of k is number.Real|framework.Variable, but got {type(k)}" | ||
) | ||
|
||
def log_pmf(self, k): | ||
r"""Log probability mass function evaluated at k. | ||
.. math:: | ||
\log P(X = k) = \log(1-p)^k p | ||
Args: | ||
k (int): Value to be evaluated. | ||
Returns: | ||
Tensor: Log probability. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom = Geometric(0.5) | ||
geom.log_pmf(2) | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [-1.38629436]) | ||
""" | ||
if isinstance(k, (numbers.Integral, framework.Variable)): | ||
return paddle.log(self.pmf(k)) | ||
else: | ||
raise TypeError( | ||
f"Expected type of k is number.Real|framework.Variable, but got {type(k)}" | ||
) | ||
|
||
def sample(self, shape=()): | ||
"""Sample from Geometric distribution with sample shape. | ||
Args: | ||
shape (tuple(int)): Sample shape. | ||
Returns: | ||
Sampled data with shape `sample_shape` + `batch_shape` + `event_shape`. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom = Geometric(0.5) | ||
geom.sample((2,2)) | ||
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [[[4.28128004], | ||
# [0.53546447]], | ||
# [[0.88012987], | ||
# [0.54070371]]]) | ||
""" | ||
with paddle.no_grad(): | ||
return self.rsample(shape) | ||
|
||
def rsample(self, shape=()): | ||
"""Generate samples of the specified shape. | ||
Args: | ||
shape(tuple(int)): The shape of generated samples. | ||
Returns: | ||
Tensor: A sample tensor that fits the Geometric distribution. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom = Geometric(0.5) | ||
geom.rsample((2,2)) | ||
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [[[2.90974379], | ||
# [1.28049409]], | ||
# [[4.60141420], | ||
# [2.98836184]]]) | ||
""" | ||
shape = distribution.Distribution._extend_shape( | ||
self, sample_shape=shape | ||
) | ||
tiny = np.finfo(dtype='float32').tiny | ||
|
||
sample_uniform = uniform.Uniform(low=float(tiny), high=float(1)) | ||
|
||
new_t = sample_uniform.sample(list(shape)) | ||
return paddle.log(new_t) / paddle.log1p(-(self.probs)) | ||
|
||
def entropy(self): | ||
r"""Entropy of dirichlet distribution. | ||
.. math:: | ||
H(X) = -\left[\frac{1}{p} \log p + \frac{1-p}{p^2} \log (1-p) \right] | ||
Returns: | ||
Tensor: Entropy. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom = Geometric(0.5) | ||
geom.entropy() | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [1.38629436]) | ||
""" | ||
x = (1.0 - self.probs) * paddle.log(1.0 - self.probs) | ||
y = self.probs * paddle.log(self.probs) | ||
|
||
return -(x + y) / self.probs | ||
|
||
def cdf(self, k): | ||
r"""Cdf of geometric distribution. | ||
.. math:: | ||
F(X \leq k) = 1 - (1-p)^k, \quad k=0,1,2,\ldots | ||
Args: | ||
k: The number of trials performed. | ||
Returns: | ||
Tensor: Entropy. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom = Geometric(0.5) | ||
geom.cdf(4) | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [0.93750000]) | ||
""" | ||
if isinstance(k, (numbers.Integral, framework.Variable)): | ||
return 1.0 - paddle.pow((1.0 - self.probs), k) | ||
else: | ||
raise TypeError( | ||
f"Expected type of k is number.Real|framework.Variable, but got {type(k)}" | ||
) | ||
|
||
def kl_divergence(self, other): | ||
r"""Calculate the KL divergence KL(self || other) with two Geometric instances. | ||
.. math:: | ||
KL(P \| Q) = \frac{p}{q} \log \frac{p}{q} + \log (1-p) - \log (1-q) | ||
Args: | ||
other (Geometric): An instance of Geometric. | ||
Returns: | ||
Tensor: The kl-divergence between two geometric distributions. | ||
Examples: | ||
.. code-block:: python | ||
import paddle | ||
from paddle.distribution import Geometric | ||
geom_p = Geometric(0.5) | ||
geom_q = Geometric(0.1) | ||
geom_p.kl_divergence(geom_q) | ||
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True, | ||
# [0.51082563]) | ||
""" | ||
if isinstance(other, Geometric): | ||
p, q = self.probs, other.probs | ||
return p * paddle.log(p / q) + (1.0 - p) * paddle.log( | ||
(1.0 - p) / (1.0 - q) | ||
) | ||
else: | ||
raise TypeError( | ||
f"Exected type of other is geometric.Geometric, but got {type(other)}" | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.