Skip to content

Commit

Permalink
【Hackathon 4th No.11】 为 paddle 添加 Geometric Distribution API (#51224)
Browse files Browse the repository at this point in the history
  • Loading branch information
dasenCoding authored Apr 28, 2023
1 parent 8f5eae4 commit bca1b0c
Show file tree
Hide file tree
Showing 5 changed files with 1,042 additions and 0 deletions.
2 changes: 2 additions & 0 deletions python/paddle/distribution/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
from paddle.distribution.transformed_distribution import TransformedDistribution
from paddle.distribution.uniform import Uniform
from paddle.distribution.laplace import Laplace
from paddle.distribution.geometric import Geometric

__all__ = [ # noqa
'Bernoulli',
Expand All @@ -47,6 +48,7 @@
'Laplace',
'LogNormal',
'Gumbel',
'Geometric',
]

__all__.extend(transform.__all__)
343 changes: 343 additions & 0 deletions python/paddle/distribution/geometric.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,343 @@
# Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numbers

import numpy as np

import paddle
from paddle.distribution import distribution, uniform
from paddle.fluid import framework


class Geometric(distribution.Distribution):
r"""
Geometric distribution parameterized by probs.
In probability theory and statistics, the geometric distribution is one of
discrete probability distributions, parameterized by one positive shape parameter, denoted by probs.
In n Bernoulli trials, it takes k trials to get the probability of success for the first time.
In detail, it is: the probability that the first k-1 times failed and the kth time succeeded.
The geometric distribution is a special case of the Pascal distribution when r=1.
The probability mass function (pmf) is
.. math::
Pr(Y=k)=(1-p)^kp
where k is number of trials performed and p is probability of success for each trial and k=0,1,2,3,4..., p belong to (0,1].
Args:
probs (Real|Tensor): Probability parameter.
The value of probs must be positive. When the parameter is a tensor, probs is probability of success for each trial.
Returns:
Geometric distribution for instantiation of probs.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.mean
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [2.])
geom.variance
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [2.])
geom.stddev
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.41421354])
"""

def __init__(self, probs):
if isinstance(probs, (numbers.Real, paddle.Tensor, framework.Variable)):
if isinstance(probs, numbers.Real):
probs = paddle.full(
shape=(), fill_value=probs, dtype=paddle.float32
)

all_ones = paddle.full(
shape=probs.shape, fill_value=1, dtype=probs.dtype
)
all_zeros = paddle.full(
shape=probs.shape, fill_value=0, dtype=probs.dtype
)
all_false = paddle.full(
shape=probs.shape, fill_value=False, dtype=bool
)

lessthen_0 = probs <= all_zeros
morethen_1 = probs > all_ones

else:
raise TypeError(
f"Expected type of probs is Number.Real|Tensor|framework.Variable, but got {type(probs)}"
)

if paddle.equal_all(lessthen_0, all_false) and paddle.equal_all(
morethen_1, all_false
):
batch_shape = tuple(probs.shape)
else:
raise ValueError(
"Expected parameter probs of distribution Geometric to satisfy the"
"constraint Interval(lower_bound=0.0, upper_bound=1.0)"
)

self.probs = probs
super().__init__(batch_shape)

@property
def mean(self):
"""Mean of geometric distribution."""
return 1.0 / self.probs

@property
def variance(self):
"""Variance of geometric distribution."""
return paddle.to_tensor(
(1.0 / self.probs - 1.0) / self.probs,
dtype=self.probs.dtype,
)

@property
def stddev(self):
"""Standard deviation of Geometric distribution."""
return paddle.sqrt(self.variance)

def pmf(self, k):
r"""Probability mass funciotn evaluated at k.
.. math::
P(X=k) = (1-p)^{k-1} p, \quad k=1,2,3,\ldots
Args:
k (int): Value to be evaluated.
Returns:
Tensor: Probability.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.pmf(2)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.25000000])
"""
if isinstance(k, (numbers.Integral, framework.Variable)):
return paddle.pow((1.0 - self.probs), k - 1.0) * self.probs
else:
raise TypeError(
f"Expected type of k is number.Real|framework.Variable, but got {type(k)}"
)

def log_pmf(self, k):
r"""Log probability mass function evaluated at k.
.. math::
\log P(X = k) = \log(1-p)^k p
Args:
k (int): Value to be evaluated.
Returns:
Tensor: Log probability.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.log_pmf(2)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [-1.38629436])
"""
if isinstance(k, (numbers.Integral, framework.Variable)):
return paddle.log(self.pmf(k))
else:
raise TypeError(
f"Expected type of k is number.Real|framework.Variable, but got {type(k)}"
)

def sample(self, shape=()):
"""Sample from Geometric distribution with sample shape.
Args:
shape (tuple(int)): Sample shape.
Returns:
Sampled data with shape `sample_shape` + `batch_shape` + `event_shape`.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.sample((2,2))
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[[4.28128004],
# [0.53546447]],
# [[0.88012987],
# [0.54070371]]])
"""
with paddle.no_grad():
return self.rsample(shape)

def rsample(self, shape=()):
"""Generate samples of the specified shape.
Args:
shape(tuple(int)): The shape of generated samples.
Returns:
Tensor: A sample tensor that fits the Geometric distribution.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.rsample((2,2))
# Tensor(shape=[2, 2, 1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [[[2.90974379],
# [1.28049409]],
# [[4.60141420],
# [2.98836184]]])
"""
shape = distribution.Distribution._extend_shape(
self, sample_shape=shape
)
tiny = np.finfo(dtype='float32').tiny

sample_uniform = uniform.Uniform(low=float(tiny), high=float(1))

new_t = sample_uniform.sample(list(shape))
return paddle.log(new_t) / paddle.log1p(-(self.probs))

def entropy(self):
r"""Entropy of dirichlet distribution.
.. math::
H(X) = -\left[\frac{1}{p} \log p + \frac{1-p}{p^2} \log (1-p) \right]
Returns:
Tensor: Entropy.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.entropy()
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [1.38629436])
"""
x = (1.0 - self.probs) * paddle.log(1.0 - self.probs)
y = self.probs * paddle.log(self.probs)

return -(x + y) / self.probs

def cdf(self, k):
r"""Cdf of geometric distribution.
.. math::
F(X \leq k) = 1 - (1-p)^k, \quad k=0,1,2,\ldots
Args:
k: The number of trials performed.
Returns:
Tensor: Entropy.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom = Geometric(0.5)
geom.cdf(4)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.93750000])
"""
if isinstance(k, (numbers.Integral, framework.Variable)):
return 1.0 - paddle.pow((1.0 - self.probs), k)
else:
raise TypeError(
f"Expected type of k is number.Real|framework.Variable, but got {type(k)}"
)

def kl_divergence(self, other):
r"""Calculate the KL divergence KL(self || other) with two Geometric instances.
.. math::
KL(P \| Q) = \frac{p}{q} \log \frac{p}{q} + \log (1-p) - \log (1-q)
Args:
other (Geometric): An instance of Geometric.
Returns:
Tensor: The kl-divergence between two geometric distributions.
Examples:
.. code-block:: python
import paddle
from paddle.distribution import Geometric
geom_p = Geometric(0.5)
geom_q = Geometric(0.1)
geom_p.kl_divergence(geom_q)
# Tensor(shape=[1], dtype=float32, place=Place(cpu), stop_gradient=True,
# [0.51082563])
"""
if isinstance(other, Geometric):
p, q = self.probs, other.probs
return p * paddle.log(p / q) + (1.0 - p) * paddle.log(
(1.0 - p) / (1.0 - q)
)
else:
raise TypeError(
f"Exected type of other is geometric.Geometric, but got {type(other)}"
)
6 changes: 6 additions & 0 deletions python/paddle/distribution/kl.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
from paddle.distribution.dirichlet import Dirichlet
from paddle.distribution.distribution import Distribution
from paddle.distribution.exponential_family import ExponentialFamily
from paddle.distribution.geometric import Geometric
from paddle.distribution.laplace import Laplace
from paddle.distribution.lognormal import LogNormal
from paddle.distribution.normal import Normal
Expand Down Expand Up @@ -200,6 +201,11 @@ def _kl_laplace_laplace(p, q):
return p.kl_divergence(q)


@register_kl(Geometric, Geometric)
def _kl_geometric_geometric(p, q):
return p.kl_divergence(q)


@register_kl(ExponentialFamily, ExponentialFamily)
def _kl_expfamily_expfamily(p, q):
"""Compute kl-divergence using `Bregman divergences <https://www.lix.polytechnique.fr/~nielsen/EntropyEF-ICIP2010.pdf>`_"""
Expand Down
Loading

0 comments on commit bca1b0c

Please sign in to comment.