-
Notifications
You must be signed in to change notification settings - Fork 5.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add dropout npu op * fix bugs * add unittest * fix bugs * support 1-D input
- Loading branch information
Showing
3 changed files
with
507 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the Licnse. */ | ||
|
||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/framework/ddim.h" | ||
#include "paddle/fluid/framework/tensor_util.h" | ||
#include "paddle/fluid/operators/dropout_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename DeviceContext, typename T> | ||
class DropoutNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<Tensor>("X"); | ||
auto* seed_tensor = | ||
ctx.HasInput("Seed") ? ctx.Input<Tensor>("Seed") : nullptr; | ||
auto* out = ctx.Output<Tensor>("Out"); | ||
auto* mask = ctx.Output<Tensor>("Mask"); | ||
|
||
auto dropout_prob = ctx.Attr<float>("dropout_prob"); | ||
auto is_test = ctx.Attr<bool>("is_test"); | ||
|
||
out->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
if (dropout_prob == 1.) { | ||
const auto& runner_zeros_out = NpuOpRunner("ZerosLike", {*out}, {*out}); | ||
runner_zeros_out.Run(stream); | ||
mask->mutable_data<uint8_t>(ctx.GetPlace()); | ||
const auto& runner_zeros_mask = | ||
NpuOpRunner("ZerosLike", {*mask}, {*mask}); | ||
runner_zeros_mask.Run(stream); | ||
return; | ||
} | ||
|
||
// only achive the default `upscale_in_train` method | ||
if (!is_test) { | ||
Tensor tmp_x(x->type()); | ||
Tensor tmp_out(out->type()); | ||
tmp_x.ShareDataWith(*x); | ||
tmp_out.ShareDataWith(*out); | ||
if (x->dims().size() == 1) { | ||
// DropOutDoMask will get error result when input | ||
// is 1-D. Make it become 2-D. | ||
std::vector<int> vec_dim = framework::vectorize<int>(x->dims()); | ||
tmp_x.Resize(framework::make_ddim({vec_dim[0], 1})); | ||
tmp_out.Resize(framework::make_ddim({vec_dim[0], 1})); | ||
} | ||
|
||
int seed = 0; | ||
int seed2 = 0; | ||
float keep_prob = 1. - dropout_prob; | ||
if (seed_tensor) { | ||
std::vector<int> seed_data; | ||
TensorToVector(*seed_tensor, ctx.device_context(), &seed_data); | ||
seed = seed_data[0]; | ||
} else { | ||
seed = ctx.Attr<bool>("fix_seed") ? ctx.Attr<int>("seed") : 0; | ||
} | ||
|
||
Tensor keep_prob_tensor(x->type()); | ||
keep_prob_tensor.mutable_data<T>({1}, ctx.GetPlace()); | ||
FillNpuTensorWithConstant<T>(&keep_prob_tensor, | ||
static_cast<T>(keep_prob)); | ||
|
||
mask->mutable_data<uint8_t>(ctx.GetPlace()); | ||
|
||
// mask used in `DropOutGenMask` NPU OP is different from | ||
// the output `Mask`. | ||
Tensor npu_mask(framework::proto::VarType::UINT8); | ||
uint32_t length = (x->numel() + 128 - 1) / 128 * 128; | ||
npu_mask.Resize(framework::make_ddim({length / 8})); | ||
npu_mask.mutable_data<uint8_t>(ctx.GetPlace()); | ||
|
||
// TODO(pangyoki): `keep_prob` used in `DropOutGenMask` NPU | ||
// OP must be a scalar with shape[0]. At present, the shape | ||
// of the `prob` Tensor of this OP is forced to be set to 0 | ||
// in `npu_op_runner.cc`, which needs to be optimized later. | ||
NpuOpRunner runner_gen_mask; | ||
runner_gen_mask.SetType("DropOutGenMask") | ||
.AddInput(framework::vectorize(tmp_out.dims())) | ||
.AddInput(keep_prob_tensor) | ||
.AddOutput(npu_mask) | ||
.AddAttr("seed", seed) | ||
.AddAttr("seed2", seed2); | ||
runner_gen_mask.Run(stream); | ||
|
||
NpuOpRunner runner_dropout; | ||
runner_dropout.SetType("DropOutDoMask") | ||
.AddInput(tmp_x) | ||
.AddInput(npu_mask) | ||
.AddInput(keep_prob_tensor) | ||
.AddOutput(tmp_out); | ||
runner_dropout.Run(stream); | ||
|
||
// cast `out` from float/float16 to bool | ||
Tensor cast_mask(framework::proto::VarType::BOOL); | ||
cast_mask.Resize(mask->dims()); | ||
cast_mask.mutable_data<bool>(ctx.GetPlace()); | ||
auto dst_dtype_bool = ConvertToNpuDtype(cast_mask.type()); | ||
const auto& runner_cast_mask_bool = | ||
NpuOpRunner("Cast", {*out}, {cast_mask}, | ||
{{"dst_type", static_cast<int>(dst_dtype_bool)}}); | ||
runner_cast_mask_bool.Run(stream); | ||
|
||
// cast cast_mask from bool to uint8 | ||
auto dst_dtype_uint8 = ConvertToNpuDtype(mask->type()); | ||
const auto& runner_cast_mask_uint8 = | ||
NpuOpRunner("Cast", {cast_mask}, {*mask}, | ||
{{"dst_type", static_cast<int>(dst_dtype_uint8)}}); | ||
runner_cast_mask_uint8.Run(stream); | ||
} else { | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), out); | ||
} | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class DropoutGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out")); | ||
auto* mask = ctx.Input<Tensor>("Mask"); | ||
|
||
auto dropout_prob = ctx.Attr<float>("dropout_prob"); | ||
auto is_test = ctx.Attr<bool>("is_test"); | ||
|
||
PADDLE_ENFORCE_EQ(is_test, false, | ||
platform::errors::PreconditionNotMet( | ||
"GradOp is only callable when is_test is false")); | ||
|
||
dx->mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
if (dropout_prob == 1.) { | ||
const auto& runner_zeros = NpuOpRunner("ZerosLike", {*dx}, {*dx}); | ||
runner_zeros.Run(stream); | ||
return; | ||
} | ||
|
||
// cast mask from uint8 to float32/float16 | ||
Tensor cast_mask(dx->type()); | ||
cast_mask.Resize(mask->dims()); | ||
cast_mask.mutable_data<T>(ctx.GetPlace()); | ||
auto dst_dtype = ConvertToNpuDtype(dx->type()); | ||
const auto& runner_cast_mask = | ||
NpuOpRunner("Cast", {*mask}, {cast_mask}, | ||
{{"dst_type", static_cast<int>(dst_dtype)}}); | ||
runner_cast_mask.Run(stream); | ||
|
||
const auto& runner = | ||
NpuOpRunner("MaskedScale", {*dout, cast_mask}, {*dx}, | ||
{{"value", static_cast<float>(1. / (1 - dropout_prob))}}); | ||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
dropout, ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::DropoutNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
dropout_grad, | ||
ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::DropoutGradNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.