Skip to content

Commit

Permalink
【Hackathon 7th No.23】NO.23 为 Paddle 新增 ParameterDict API
Browse files Browse the repository at this point in the history
  • Loading branch information
Micalling committed Sep 20, 2024
1 parent f97db7a commit da89a71
Show file tree
Hide file tree
Showing 3 changed files with 216 additions and 1 deletion.
9 changes: 8 additions & 1 deletion python/paddle/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,13 @@

# TODO: import all neural network related api under this directory,
# including layers, linear, conv, rnn etc.
from .layer.container import LayerDict, LayerList, ParameterList, Sequential
from .layer.container import (
LayerDict,
LayerList,
ParameterDict,
ParameterList,
Sequential,
)
from .layer.conv import (
Conv1D,
Conv1DTranspose,
Expand Down Expand Up @@ -243,6 +249,7 @@
'TransformerEncoder',
'Softmax',
'Softmax2D',
'ParameterDict',
'ParameterList',
'Conv2D',
'Softshrink',
Expand Down
118 changes: 118 additions & 0 deletions python/paddle/nn/layer/container.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,124 @@ def update(
self.add_sublayer(kv[0], kv[1])


class ParameterDict(Layer):
"""
Holds parameters in a dictionary.
ParameterDict can be indexed like a regular Python dictionary, but Parameters it contains are properly registered.
Parameters:
values (iterable, optional): a mapping (dictionary) of (string : Any) or an iterable of key-value pairs of type (string, Any)
Examples:
.. code-block:: python
>>> import paddle
>>> class MyLayer(paddle.nn.Layer):
... def __init__(self, num_stacked_param):
... super().__init__()
... # create ParameterDict with iterable Parameters
... self.params = paddle.nn.ParameterDict(
... {f"t{i}": paddle.create_parameter(shape=[2, 2], dtype='float32') for i in range(num_stacked_param)})
...
... def forward(self, x):
... for i, (key, p) in enumerate(self.params.items()):
... tmp = self._helper.create_variable_for_type_inference('float32')
... self._helper.append_op(
... type="mul",
... inputs={"X": x,
... "Y": p},
... outputs={"Out": tmp},
... attrs={"x_num_col_dims": 1,
... "y_num_col_dims": 1})
... x = tmp
... return x
...
>>> x = paddle.uniform(shape=[5, 2], dtype='float32')
>>> num_stacked_param = 4
>>> model = MyLayer(num_stacked_param)
>>> print(len(model.params))
4
>>> res = model(x)
>>> print(res.shape)
[5, 2]
>>> replaced_param = paddle.create_parameter(shape=[2, 3], dtype='float32')
>>> model.params['t3'] = replaced_param # replace t3 param
>>> res = model(x)
>>> print(res.shape)
[5, 3]
>>> model.params['t4'] = paddle.create_parameter(shape=[3, 4], dtype='float32') # append param
>>> print(len(model.params))
5
>>> res = model(x)
>>> print(res.shape)
[5, 4]
"""

def __init__(
self,
parameters: (
ParameterDict
| typing.Mapping[str, Tensor]
| Sequence[tuple[str, Tensor]]
| None
) = None,
) -> None:
super().__init__()
if parameters is not None:
self.update(parameters)

def __getitem__(self, key: str) -> Tensor:
with param_guard(self._parameters):
return self._parameters[key]

def __setitem__(self, key: str, param: Tensor) -> None:
assert isinstance(param, Parameter)
setattr(self, key, param)

def __len__(self) -> int:
return len(self._parameters)

def __iter__(self) -> Iterator[tuple[str, Tensor]]:
with param_guard(self._parameters):
return iter(self._parameters.items())

def update(
self,
parameters: (
ParameterDict
| typing.Mapping[str, Tensor]
| Sequence[tuple[str, Tensor]]
),
) -> None:
"""Update a given parameter at the end of the dict.
Parameters:
parameters (Parameter): parameter to update
"""
assert isinstance(parameters, Iterable), (
"The type of parameters is not iterable of key/value pairs, the type of sublayers is "
+ type(parameters).__name__
)

if isinstance(parameters, (OrderedDict, ParameterDict, Mapping)):
for key, parameter in parameters.items():
self.add_parameter(key, parameter)
else:
for i, kv in enumerate(parameters):
if len(kv) != 2:
raise ValueError(
"The length of the "
+ str(i)
+ "'s element in parameters is "
+ str(len(kv))
+ ", which must be 2."
)
self.add_parameter(kv[0], kv[1])


class ParameterList(Layer):
"""ParameterList Container.
Expand Down
90 changes: 90 additions & 0 deletions test/legacy_test/test_imperative_container_parameterdict.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from collections import OrderedDict

import numpy as np

import paddle
from paddle import _legacy_C_ops, base


class MyLayer(paddle.nn.Layer):
def __init__(self, num_stacked_param):
super().__init__()
# create ParameterList with iterable Parameters
self.params = self.paddle_imperative_ParameterDict(num_stacked_param)

def paddle_imperative_ParameterDict(self, num_stacked_param):
return paddle.nn.ParameterDict(
[
(
't' + str(i),
paddle.create_parameter(shape=[2, 2], dtype='float32'),
)
for i in range(num_stacked_param)
]
)

def forward(self, x):
for i, (key, _) in enumerate(self.params):
x = _legacy_C_ops.mul(x, self.params[key])
return x


class TestImperativeContainerParameterDict(unittest.TestCase):
def paramter_dict(self):
self.place = (
paddle.CUDAPlace(0)
if paddle.is_compiled_with_cuda()
else paddle.CPUPlace()
)
data_np = np.random.uniform(-1, 1, [5, 2]).astype('float32')
with base.dygraph.guard():
x = paddle.to_tensor(data_np)
num_stacked_param = 4
model = MyLayer(num_stacked_param)
self.assertEqual(len(model.params), num_stacked_param)
res = model(x)
self.assertListEqual(res.shape, [5, 2])
loss = paddle.mean(res)
loss.backward()

model.params['t' + str(num_stacked_param - 1)] = (
paddle.create_parameter(shape=[2, 3], dtype='float32')
)
res = model(x)
self.assertListEqual(res.shape, [5, 3])
parmeter = OrderedDict(
[
(
't' + str(num_stacked_param),
paddle.create_parameter(shape=[3, 4], dtype='float32'),
)
]
)
model.params.update(parmeter)
self.assertEqual(len(model.params), num_stacked_param + 1)
res = model(x)
self.assertListEqual(res.shape, [5, 4])
loss = paddle.mean(res)
loss.backward()

def test_paramter_dict(self):
self.paramter_dict()


if __name__ == '__main__':
unittest.main()

0 comments on commit da89a71

Please sign in to comment.