-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
【NPU】Support npu op elementwise_div and elementwise_div_grad (#31573)
* Support npu op elementwise_div and elementwise_div_grad * Support npu op elementwise_div and elementwise_div_grad * Support npu op elementwise_div and elementwise_div_grad
- Loading branch information
Showing
2 changed files
with
311 additions
and
0 deletions.
There are no files selected for viewing
140 changes: 140 additions & 0 deletions
140
paddle/fluid/operators/elementwise/elementwise_div_op_npu.cc
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#ifdef PADDLE_WITH_ASCEND_CL | ||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/operators/elementwise/elementwise_div_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
using Tensor = framework::Tensor; | ||
|
||
template <typename DeviceContext, typename T> | ||
class ElementwiseDivNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<Tensor>("X"); | ||
auto* y = ctx.Input<Tensor>("Y"); | ||
|
||
auto* out = ctx.Output<Tensor>("Out"); | ||
|
||
auto place = ctx.GetPlace(); | ||
|
||
out->mutable_data<T>(place); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
auto runner = NpuOpRunner("Div", {*x, *y}, {*out}, {}); | ||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class ElementwiseDivGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* out = ctx.Input<Tensor>("Out"); | ||
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out")); | ||
auto* x = ctx.Input<Tensor>("X"); | ||
auto* y = ctx.Input<Tensor>("Y"); | ||
|
||
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X")); | ||
auto* dy = ctx.Output<Tensor>(framework::GradVarName("Y")); | ||
|
||
auto place = ctx.GetPlace(); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
Tensor y_power(y->type()); | ||
y_power.mutable_data<T>(y->dims(), place); | ||
auto y_power_runner = NpuOpRunner("Power", {*y}, | ||
{y_power}, {{"power", static_cast<float>(-1)}}); | ||
y_power_runner.Run(stream); | ||
|
||
if (dx) { | ||
dx->mutable_data<T>(place); | ||
|
||
Tensor tensor_zeros(x->type()); | ||
tensor_zeros.mutable_data<T>(x->dims(), place); | ||
auto tensor_zeros_runner = NpuOpRunner("ZerosLike", {*x}, | ||
{tensor_zeros}, {}); | ||
tensor_zeros_runner.Run(stream); | ||
|
||
Tensor x_zero(paddle::framework::proto::VarType::BOOL); | ||
x_zero.mutable_data<bool>(x->dims(), place); | ||
auto x_zero_runner = NpuOpRunner("Equal", {*x, tensor_zeros}, | ||
{x_zero}, {}); | ||
x_zero_runner.Run(stream); | ||
|
||
Tensor x_nozero(paddle::framework::proto::VarType::BOOL); | ||
x_nozero.mutable_data<bool>(x->dims(), place); | ||
auto x_nozero_runner = NpuOpRunner("LogicalNot", {x_zero}, | ||
{x_nozero}, {}); | ||
x_nozero_runner.Run(stream); | ||
|
||
Tensor x_nozero_f(x->type()); | ||
x_nozero_f.mutable_data<T>(x->dims(), place); | ||
auto x_nozero_f_runner = NpuOpRunner("Cast", {x_nozero}, | ||
{x_nozero_f}, {{"dst_type", static_cast<int32_t>(0)}}); | ||
x_nozero_f_runner.Run(stream); | ||
|
||
Tensor x_grad_w(x->type()); | ||
x_grad_w.mutable_data<T>(x->dims(), place); | ||
auto x_grad_w_runner = NpuOpRunner("Mul", {x_nozero_f, y_power}, | ||
{x_grad_w}, {}); | ||
x_grad_w_runner.Run(stream); | ||
|
||
auto x_grad_runner = NpuOpRunner("Mul", {x_grad_w, *dout}, {*dx}, {}); | ||
x_grad_runner.Run(stream); | ||
} | ||
|
||
if (dy) { | ||
dy->mutable_data<T>(place); | ||
|
||
Tensor y_grad_w(x->type()); | ||
y_grad_w.mutable_data<T>(y->dims(), place); | ||
auto y_grad_w_runner = NpuOpRunner("Mul", {*out, y_power}, | ||
{y_grad_w}, {}); | ||
y_grad_w_runner.Run(stream); | ||
|
||
auto y_grad_runner = NpuOpRunner("Mul", {y_grad_w, *dout}, {*dy}, {}); | ||
y_grad_runner.Run(stream); | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
elementwise_div, | ||
ops::ElementwiseDivNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::ElementwiseDivNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
elementwise_div_grad, | ||
ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::ElementwiseDivGradNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); | ||
#endif |
171 changes: 171 additions & 0 deletions
171
python/paddle/fluid/tests/unittests/npu/test_elementwise_div_op_npu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,171 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import unittest | ||
import sys | ||
sys.path.append("..") | ||
from op_test import OpTest | ||
import paddle | ||
import paddle.fluid as fluid | ||
|
||
paddle.enable_static() | ||
SEED = 2021 | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestElementwiseDiv(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = "elementwise_div" | ||
self.place = paddle.NPUPlace(0) | ||
|
||
self.init_dtype() | ||
np.random.seed(SEED) | ||
x = np.random.uniform(1, 2, [11, 17]).astype(self.dtype) | ||
y = np.random.uniform(1, 2, [11, 17]).astype(self.dtype) | ||
out = np.divide(x, y) | ||
|
||
self.inputs = { | ||
'X': OpTest.np_dtype_to_fluid_dtype(x), | ||
'Y': OpTest.np_dtype_to_fluid_dtype(y) | ||
} | ||
self.attrs = {} | ||
self.outputs = {'Out': out} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
|
||
def init_dtype(self): | ||
self.dtype = np.float32 | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, check_dygraph=False) | ||
|
||
# TODO(ascendrc): Div grad test | ||
# def test_check_grad(self): | ||
# if self.dtype == np.float16: | ||
# return | ||
# self.check_grad(['X'], 'Out') | ||
# | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestElementwiseDivFp16(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.op_type = "elementwise_div" | ||
self.place = paddle.NPUPlace(0) | ||
|
||
self.init_dtype() | ||
np.random.seed(SEED) | ||
x = np.random.uniform(1, 2, [3, 4]).astype(self.dtype) | ||
y = np.random.uniform(1, 2, [3, 4]).astype(self.dtype) | ||
out = np.divide(x, y) | ||
|
||
self.inputs = { | ||
'X': OpTest.np_dtype_to_fluid_dtype(x), | ||
'Y': OpTest.np_dtype_to_fluid_dtype(y) | ||
} | ||
self.attrs = {} | ||
self.outputs = {'Out': out} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
self.__class__.no_need_check_grad = True | ||
|
||
def init_dtype(self): | ||
self.dtype = np.float16 | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, check_dygraph=False, atol=1e-5) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestElementwiseDivNet(unittest.TestCase): | ||
def _test(self, run_npu=True): | ||
main_prog = paddle.static.Program() | ||
startup_prog = paddle.static.Program() | ||
main_prog.random_seed = SEED | ||
startup_prog.random_seed = SEED | ||
np.random.seed(SEED) | ||
|
||
a_np = np.random.uniform(1, 2, [32, 32]).astype('float32') | ||
b_np = np.random.uniform(1, 2, [32, 32]).astype('float32') | ||
c_np = np.random.uniform(1, 2, [32, 32]).astype('float32') | ||
d_np = np.random.uniform(1, 2, [32, 32]).astype('float32') | ||
label_np = np.random.randint(2, size=(32, 1)).astype('int64') | ||
|
||
with paddle.static.program_guard(main_prog, startup_prog): | ||
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32') | ||
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32') | ||
c = paddle.static.data(name="c", shape=[32, 32], dtype='float32') | ||
d = paddle.static.data(name="d", shape=[32, 32], dtype='float32') | ||
label = paddle.static.data( | ||
name="label", shape=[32, 1], dtype='int64') | ||
|
||
e = paddle.multiply(a, b) | ||
f = paddle.multiply(c, d) | ||
f.stop_gradient = True | ||
g = paddle.divide(e, f) | ||
|
||
fc_1 = fluid.layers.fc(input=g, size=128) | ||
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax') | ||
|
||
cost = fluid.layers.cross_entropy(input=prediction, label=label) | ||
loss = fluid.layers.reduce_mean(cost) | ||
sgd = fluid.optimizer.SGD(learning_rate=0.01) | ||
sgd.minimize(loss) | ||
|
||
if run_npu: | ||
place = paddle.NPUPlace(0) | ||
else: | ||
place = paddle.CPUPlace() | ||
|
||
exe = paddle.static.Executor(place) | ||
exe.run(startup_prog) | ||
|
||
print("Start run on {}".format(place)) | ||
for epoch in range(100): | ||
|
||
pred_res, loss_res = exe.run(main_prog, | ||
feed={ | ||
"a": a_np, | ||
"b": b_np, | ||
"c": c_np, | ||
"d": d_np, | ||
"label": label_np | ||
}, | ||
fetch_list=[prediction, loss]) | ||
if epoch % 10 == 0: | ||
print("Epoch {} | Prediction[0]: {}, Loss: {}".format( | ||
epoch, pred_res[0], loss_res)) | ||
|
||
return pred_res, loss_res | ||
|
||
def test_npu(self): | ||
cpu_pred, cpu_loss = self._test(False) | ||
npu_pred, npu_loss = self._test(True) | ||
|
||
self.assertTrue(np.allclose(npu_pred, cpu_pred)) | ||
self.assertTrue(np.allclose(npu_loss, cpu_loss)) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() |