-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
53 changed files
with
1,564 additions
and
414 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,84 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "paddle/framework/tensor.h" | ||
#include "unsupported/Eigen/CXX11/Tensor" | ||
|
||
namespace paddle { | ||
namespace framework { | ||
|
||
// EigenDim converts paddle::platform::DDim into Eigen::DSizes. | ||
template <int D> | ||
struct EigenDim { | ||
using Type = Eigen::DSizes<Eigen::DenseIndex, D>; | ||
|
||
static Type From(const DDim& dims) { | ||
PADDLE_ENFORCE(arity(dims) == D, "D must match arity(DDim)"); | ||
Type ret; | ||
for (int d = 0; d < arity(dims); d++) { | ||
ret[d] = dims[d]; | ||
} | ||
return ret; | ||
} | ||
}; | ||
|
||
// Interpret paddle::platform::Tensor as EigenTensor and EigenConstTensor. | ||
template <typename T, size_t D, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
struct EigenTensor { | ||
// TODO(qijun) Now, default type in unaligned, and we will make a benchmark on | ||
// the speed of aligned and unaligned version in future. | ||
using Type = Eigen::TensorMap<Eigen::Tensor<T, D, MajorType, IndexType>>; | ||
|
||
using ConstType = | ||
Eigen::TensorMap<Eigen::Tensor<const T, D, MajorType, IndexType>>; | ||
|
||
static Type From(Tensor& tensor, DDim dims) { | ||
return Type(tensor.data<T>(), EigenDim<D>::From(dims)); | ||
} | ||
|
||
static Type From(Tensor& tensor) { return From(tensor, tensor.dims_); } | ||
|
||
static ConstType From(const Tensor& tensor, DDim dims) { | ||
return ConstType(tensor.data<T>(), EigenDim<D>::From(dims)); | ||
} | ||
|
||
static ConstType From(const Tensor& tensor) { | ||
return From(tensor, tensor.dims_); | ||
} | ||
}; | ||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
struct EigenVector : public EigenTensor<T, 1, MajorType, IndexType> { | ||
// Flatten is to reshape a Tensor into a one dimension EigenVector | ||
static typename EigenTensor<T, 1>::Type Flatten(Tensor& tensor) { | ||
return EigenTensor<T, 1>::From( | ||
tensor, make_ddim({static_cast<int>(product(tensor.dims_))})); | ||
} | ||
|
||
static typename EigenTensor<T, 1>::ConstType Flatten(const Tensor& tensor) { | ||
return EigenTensor<T, 1>::From( | ||
tensor, make_ddim({static_cast<int>(product(tensor.dims_))})); | ||
} | ||
}; | ||
|
||
template <typename T, int MajorType = Eigen::RowMajor, | ||
typename IndexType = Eigen::DenseIndex> | ||
using EigenMatrix = EigenTensor<T, 2, MajorType, IndexType>; | ||
|
||
} // namespace framework | ||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
/* | ||
Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. | ||
*/ | ||
|
||
#include "paddle/framework/eigen.h" | ||
#include <gtest/gtest.h> | ||
|
||
namespace paddle { | ||
namespace framework { | ||
|
||
TEST(EigenDim, From) { | ||
EigenDim<3>::Type ed = EigenDim<3>::From(make_ddim({1, 2, 3})); | ||
ASSERT_EQ(1, ed[0]); | ||
ASSERT_EQ(2, ed[1]); | ||
ASSERT_EQ(3, ed[2]); | ||
} | ||
|
||
TEST(Eigen, Tensor) { | ||
Tensor t; | ||
float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace()); | ||
for (int i = 0; i < 1 * 2 * 3; i++) { | ||
p[i] = static_cast<float>(i); | ||
} | ||
|
||
EigenTensor<float, 3>::Type et = EigenTensor<float, 3>::From(t); | ||
|
||
ASSERT_EQ(1, et.dimension(0)); | ||
ASSERT_EQ(2, et.dimension(1)); | ||
ASSERT_EQ(3, et.dimension(2)); | ||
|
||
for (int i = 0; i < 1; i++) { | ||
for (int j = 0; j < 2; j++) { | ||
for (int k = 0; k < 3; k++) { | ||
ASSERT_NEAR((i * 2 + j) * 3 + k, et(i, j, k), 1e-6f); | ||
} | ||
} | ||
} | ||
} | ||
|
||
TEST(Eigen, VectorFrom) { | ||
Tensor t; | ||
float* p = t.mutable_data<float>(make_ddim({6}), platform::CPUPlace()); | ||
for (int i = 0; i < 6; i++) { | ||
p[i] = static_cast<float>(i); | ||
} | ||
|
||
EigenVector<float>::Type ev = EigenVector<float>::From(t); | ||
|
||
ASSERT_EQ(6, ev.dimension(0)); | ||
|
||
for (int i = 0; i < 6; i++) { | ||
ASSERT_NEAR(i, ev(i), 1e-6f); | ||
} | ||
} | ||
|
||
TEST(Eigen, VectorFlatten) { | ||
Tensor t; | ||
float* p = t.mutable_data<float>(make_ddim({1, 2, 3}), platform::CPUPlace()); | ||
for (int i = 0; i < 1 * 2 * 3; i++) { | ||
p[i] = static_cast<float>(i); | ||
} | ||
|
||
EigenVector<float>::Type ev = EigenVector<float>::Flatten(t); | ||
|
||
ASSERT_EQ(1 * 2 * 3, ev.dimension(0)); | ||
|
||
for (int i = 0; i < 1 * 2 * 3; i++) { | ||
ASSERT_NEAR(i, ev(i), 1e-6f); | ||
} | ||
} | ||
|
||
TEST(Eigen, Matrix) { | ||
Tensor t; | ||
float* p = t.mutable_data<float>(make_ddim({2, 3}), platform::CPUPlace()); | ||
for (int i = 0; i < 2 * 3; i++) { | ||
p[i] = static_cast<float>(i); | ||
} | ||
|
||
EigenMatrix<float>::Type em = EigenMatrix<float>::From(t); | ||
|
||
ASSERT_EQ(2, em.dimension(0)); | ||
ASSERT_EQ(3, em.dimension(1)); | ||
|
||
for (int i = 0; i < 2; i++) { | ||
for (int j = 0; j < 3; j++) { | ||
ASSERT_NEAR(i * 3 + j, em(i, j), 1e-6f); | ||
} | ||
} | ||
} | ||
|
||
} // namespace framework | ||
} // namespace paddle |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.