-
Notifications
You must be signed in to change notification settings - Fork 5.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* add topk op * add cmake * update topk npu op * refactor func * fix test not go npu TopKD bug * NPUPlace(4) to NPUPlace(0) * update comment Co-authored-by: oyjxer <1728722986@qq.com>
- Loading branch information
Showing
2 changed files
with
184 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/operators/top_k_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
void gen_assist_seq(framework::Tensor* assit_tensor, | ||
int64_t dim, const framework::ExecutionContext& ctx) { | ||
const int64_t dimx2 = dim; | ||
std::vector<paddle::platform::float16> assit; | ||
assit.resize(2 * dimx2); | ||
for (int64_t i = 0; i < dimx2; i++) { | ||
// for i in range [0, dim] | ||
assit[i] = static_cast<paddle::platform::float16>(i); | ||
|
||
// for i in range [dim, dimx2] | ||
int64_t idx = static_cast<int64_t>( | ||
static_cast<paddle::platform::float16>(i)); | ||
int64_t gap = i - idx; | ||
assit[i + dim] = static_cast<paddle::platform::float16>(gap); | ||
} | ||
framework::TensorFromVector(assit, ctx.device_context(), assit_tensor); | ||
} | ||
|
||
|
||
template <typename DeviceContext, typename T> | ||
class TopkNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
// read input | ||
auto* input = ctx.Input<framework::LoDTensor>("X"); | ||
auto* output = ctx.Output<framework::LoDTensor>("Out"); | ||
auto* indices = ctx.Output<framework::LoDTensor>("Indices"); | ||
|
||
size_t k = static_cast<int>(ctx.Attr<int>("k")); | ||
|
||
output->mutable_data<T>(ctx.GetPlace()); | ||
indices->mutable_data<int>(ctx.GetPlace()); | ||
|
||
// prepare assit | ||
auto dim = input->dims().size(); | ||
framework::Tensor assist_seq_tensor; | ||
assist_seq_tensor.Resize({2 * dim}); | ||
assist_seq_tensor.mutable_data<T>(ctx.GetPlace()); | ||
gen_assist_seq(&assist_seq_tensor, dim, ctx); | ||
|
||
framework::NPUAttributeMap attr_input = {{"sorted", "true"}, | ||
{"k", static_cast<int>(k)}, | ||
{"dim", -1}, | ||
{"largest", true}}; | ||
|
||
// run ascend | ||
auto runner = NpuOpRunner("TopKD", | ||
{*input, assist_seq_tensor}, | ||
{*output, *indices}, | ||
attr_input); | ||
|
||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
|
||
runner.Run(stream); | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
// Ascend Op TopKD only support input float 16 dtype | ||
REGISTER_OP_NPU_KERNEL( | ||
top_k, | ||
ops::TopkNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); |
95 changes: 95 additions & 0 deletions
95
python/paddle/fluid/tests/unittests/npu/test_top_k_op_npu.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,95 @@ | ||
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
from __future__ import print_function | ||
|
||
import numpy as np | ||
import unittest | ||
import sys | ||
sys.path.append("..") | ||
from op_test import OpTest | ||
import paddle | ||
import paddle.fluid as fluid | ||
from paddle.fluid import core | ||
|
||
paddle.enable_static() | ||
SEED = 2021 | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestTopk(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.op_type = "top_k" | ||
self.init_dtype() | ||
|
||
x = np.array([[0.78104149, 0.88745828, 0.32362268], | ||
[0.82196718, 0.48763277, 0.42826136], | ||
[0.96527182, 0.34851612, 0.12959783]]).astype(self.dtype) | ||
|
||
self.inputs = {'X': x} | ||
np_out = np.array([[0.88745828], [0.82196718], [0.96527182]]).astype(self.dtype) | ||
np_indices = np.array([[1], [0], [0]]) | ||
|
||
self.attrs = {'k': 1, "axis": -1} | ||
self.outputs = {'Out': np_out, 'Indices':np_indices} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
self.__class__.no_need_check_grad = True | ||
|
||
def init_dtype(self): | ||
self.dtype = np.float16 | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, check_dygraph=False) | ||
|
||
|
||
@unittest.skipIf(not paddle.is_compiled_with_npu(), | ||
"core is not compiled with NPU") | ||
class TestTopkV2(OpTest): | ||
def setUp(self): | ||
self.set_npu() | ||
self.place = paddle.NPUPlace(0) | ||
self.op_type = "top_k" | ||
self.init_dtype() | ||
|
||
x = np.array([[0.78104149, 0.88745828, 0.32362268], | ||
[0.82196718, 0.48763277, 0.42826136], | ||
[0.96527182, 0.34851612, 0.12959783]]).astype(self.dtype) | ||
|
||
self.inputs = {'X': x} | ||
np_out = np.array([[0.88745828, 0.78104149], [0.82196718, 0.48763277], [0.96527182, 0.34851612]]).astype(self.dtype) | ||
np_indices = np.array([[1, 0], [0, 1], [0, 1]]) | ||
|
||
self.attrs = {'k': 2, "axis": -1} | ||
self.outputs = {'Out': np_out, 'Indices':np_indices} | ||
|
||
def set_npu(self): | ||
self.__class__.use_npu = True | ||
self.__class__.no_need_check_grad = True | ||
|
||
def init_dtype(self): | ||
self.dtype = np.float16 | ||
|
||
def test_check_output(self): | ||
self.check_output_with_place(self.place, check_dygraph=False) | ||
|
||
|
||
if __name__ == '__main__': | ||
unittest.main() | ||
|
||
|