-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
New LSTM error! #56
Comments
There are several things you can try:
|
hi @emailweixu , so your meaning is that larger learning_rate or some optimization algorithms will lead to floating point exception? And why is this? Are there some parameter updates too large or zero ? THX~ |
Hi @NIULQfromNJU . I had similar Issue #46 with LSTMs (internal state grow over time), switched to GRUs and have no issues with them so far. Judging by "An Empirical Exploration of Recurrent Network Architectures" paper they are comparable in terms of accuracy. GRU are stable, because the state cannot grow higher than the maximal input |
@F0REacH thanks man~ |
add test_metrics
update scipy and numpy version for unittests of fft
* 1. add interface for fft; 2. add data type predicate; 3. fix paddle.roll. * add fft c2c cufft kernel * implement argument checking & op calling parts for fft_c2c and fftn_c2c * add operator and opmaker definitions * only register float and double for cpu. * add common code for implementing FFT, add pocketfft as a dependency * add fft c2c cufft kernel function * fix bugs in python interface * add support for c2r, r2c operators, op makers, kernels and kernel functors. * test and fix bugs * 1. fft_c2c function: add support for onesided=False; 2. add complex<float>, complex<double> support for concat and flip. * 1. fft: fix python api bugs; 2. shape_op: add support for complex data types. * fft c2c cufft kernel done with complie and link * fix shape_op, add mkl placeholder * remove mkl * complete fft c2c in gpu * 1. implement mkl-based fft, FFTC2CFunctor and common function exec_fft; 2. change the design, add input and output typename as template parameter for all FFTFunctors, update pocketfft-based implementation. * complete fft c2c on gpu in ND * complete fft c2c on gpu in ND * complete fft c2c backward in ND * fix MKL-based implementation * Add frame op and CPU/GPU kernels. * Add frame op forward unittest. * Add frame op forward unittest. * Remove axis parameter in FrameFunctor. * Add frame op grad CPU/GPU kernels and unittest. * Add frame op grad CPU/GPU kernels and unittest. * Update doc string. * Update after review and remove librosa requirement in unittest. * Update grad kernel. * add fft_c2r op * Remove data allocation in TransCompute function. * add fft r2c onesided with cpu(pocketfft/mkl) and gpu * last fft c2r functor * fix C2R and R2C for cufft, becase the direction is not an option in these cases. * add fft r2c onesided with cpu(pocketfft/mkl) and gpu * fix bugs in python APIs * fix fft_c2r grad kernal * fix bugs in python APIs * add cuda fft c2r grad kernal functor * clean code * fix fft_c2r python API * fill fft r2c result with conjugate symmetry (#19) fill fft r2c result with conjugate symmetry * add placeholder for unittests (#24) * simple parameterize test function by auto generate test case from parm list (#25) * miscellaneous fixes for python APIs (#26) * add placeholder for unittests * resize fft inputs before computation is n or s is provided. * add complex kernels for pad and pad_grad * simplify argument checking. * add type promotion * add int to float or complex promotion * fix output data type for static mode * fix fft's input dtype dispatch, import fft to paddle * fix typos in axes checking (#27) * fix typos in axes checking * fix argument checking (#28) * fix argument checking * Add C2R Python layer normal and abnormal use cases (#29) * documents and single case * test c2r case * New C2R Python layer normal and exception use cases * complete rfft,rfft2,rfftn,ihfft,ihfft2,ihfftn unittest and doc string (#30) * Documentation of the common interfaces of c2r and c2c (#31) * Documentation of the common interfaces of c2r and c2c * clean c++ code (#32) * clean code * Add numpy-based implementation of spectral ops (#33) * add numpy reference implementation of spectral ops * Add fft_c2r numpy based implementation for unittest. (#34) * add fft_c2r numpy implementation * Add deframe op and stft/istft api. (#23) * Add frame api * Add deframe op and kernels. * Add stft and istft apis. * Add deframe api. Update stft and istft apis. * Fix bug in frame_from_librosa function when input dims >= 3 * Rename deframe to overlap_add. * Update istft. * Update after code review. * Add overlap_add op and stft/istft api unittest (#35) * Add overlap_add op unittest. * Register complex kernels of squeeze/unsquuze op. * Add stft/istft api unittest. * Add unittest for fft helper functions (#36) * add unittests for fft helper functions. add complex kernel for roll op. * complete static graph unittest for all public api (#37) * Unittest of op with FFT C2C, C2R and r2c added (#38) * documents and single case * test c2r case * New C2R Python layer normal and exception use cases * Documentation of the common interfaces of c2r and c2c * Unittest of op with FFT C2C, C2R and r2c added Co-authored-by: lijiaqi <lijiaqi0612@163.com> * add fft related options to CMakeLists.txt * fix typos and clean code (#39) * fix invisible character in mkl branch and fix error in error message * clean code: remove docstring from unittest for signal.py. * always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. (#40) * always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. * fix CI Errors: numpy dtype comparison, thrust when cuda is not available (#41) 1. always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. 2. promote floating point tensor to complex tensor ior fft_c2c and fft_c2r; 3. fix unittest to catch UnImplementedError and RuntimeError; 4. fix compile error by avoid using thrust when cuda is not available. 5. fix sample code, use paddle.fft instead of paddle.tensor.fft * remove inclusion of thrust, add __all__ list for fft (#42) * Add api doc and update unittest. (#43) * Add doc strings. * Update overlap_add op unittest * fix MKL-based FFT implementation (#44) * fix MKL-based FFT implementation, MKL CDFT's FORWARD DOMAIN is always REAL for R2C and C2R * remove code for debug (#45) * use dynload for cufft (#46) * use std::ptrdiff_t as datatype of stride (instead of int64_t) to avoid argument mismatch on some platforms. * add complex support for fill_zeros_like * use dynload for cufft * Update doc and unittest. (#47) * Add doc of frame op and overlap_add op. * Update unittest. * use dynload for cufft (#48) 1. use dynload for cufft 2. fix unittest; 3. temporarily disable Rocm. * fix conflicts and merge upstream (#49) fix conflicts and merge upstream * fix compile error: only link dyload_cuda when cuda is available (#50) * fix compile error: only link dyload_cuda when cuda is available * fix dynload for cufft on windows (#51) 1. fix dynload for cufft on windows; 2. fix unittests. * add NOMINMAX to compile on windows (#52) add NOMINMAX to compile on windows * explicitly specify capture mode for lambdas (#55) explicitly specify capture mode for lambdas * fix fft sample (#53) * fix fft sample * update scipy and numpy version for unittests of fft (#56) update scipy and numpy version for unittests of fft * Add static graph unittests of frame and overlap_add api. (#57) * Remove cache of cuFFT & Disable ONEMKL (#59) 1. replace numpy.fft with scipy.fft as numpy<1.20 not support ortho norm 2. remove cache of cufft plans; 3. enhance error checking. 4. default WITH_ONEMKL to OFF Co-authored-by: jeff41404 <jeff41404@gmail.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming9.bjyz.baidu.com> Co-authored-by: KP <109694228@qq.com> Co-authored-by: lijiaqi <lijiaqi0612@163.com> Co-authored-by: Xiaoxu Chen <chenxx_id@163.com> Co-authored-by: lijiaqi0612 <33169170+lijiaqi0612@users.noreply.github.com>
* 1. add interface for fft; 2. add data type predicate; 3. fix paddle.roll. * add fft c2c cufft kernel * implement argument checking & op calling parts for fft_c2c and fftn_c2c * add operator and opmaker definitions * only register float and double for cpu. * add common code for implementing FFT, add pocketfft as a dependency * add fft c2c cufft kernel function * fix bugs in python interface * add support for c2r, r2c operators, op makers, kernels and kernel functors. * test and fix bugs * 1. fft_c2c function: add support for onesided=False; 2. add complex<float>, complex<double> support for concat and flip. * 1. fft: fix python api bugs; 2. shape_op: add support for complex data types. * fft c2c cufft kernel done with complie and link * fix shape_op, add mkl placeholder * remove mkl * complete fft c2c in gpu * 1. implement mkl-based fft, FFTC2CFunctor and common function exec_fft; 2. change the design, add input and output typename as template parameter for all FFTFunctors, update pocketfft-based implementation. * complete fft c2c on gpu in ND * complete fft c2c on gpu in ND * complete fft c2c backward in ND * fix MKL-based implementation * Add frame op and CPU/GPU kernels. * Add frame op forward unittest. * Add frame op forward unittest. * Remove axis parameter in FrameFunctor. * Add frame op grad CPU/GPU kernels and unittest. * Add frame op grad CPU/GPU kernels and unittest. * Update doc string. * Update after review and remove librosa requirement in unittest. * Update grad kernel. * add fft_c2r op * Remove data allocation in TransCompute function. * add fft r2c onesided with cpu(pocketfft/mkl) and gpu * last fft c2r functor * fix C2R and R2C for cufft, becase the direction is not an option in these cases. * add fft r2c onesided with cpu(pocketfft/mkl) and gpu * fix bugs in python APIs * fix fft_c2r grad kernal * fix bugs in python APIs * add cuda fft c2r grad kernal functor * clean code * fix fft_c2r python API * fill fft r2c result with conjugate symmetry (#19) fill fft r2c result with conjugate symmetry * add placeholder for unittests (#24) * simple parameterize test function by auto generate test case from parm list (#25) * miscellaneous fixes for python APIs (#26) * add placeholder for unittests * resize fft inputs before computation is n or s is provided. * add complex kernels for pad and pad_grad * simplify argument checking. * add type promotion * add int to float or complex promotion * fix output data type for static mode * fix fft's input dtype dispatch, import fft to paddle * fix typos in axes checking (#27) * fix typos in axes checking * fix argument checking (#28) * fix argument checking * Add C2R Python layer normal and abnormal use cases (#29) * documents and single case * test c2r case * New C2R Python layer normal and exception use cases * complete rfft,rfft2,rfftn,ihfft,ihfft2,ihfftn unittest and doc string (PaddlePaddle#30) * Documentation of the common interfaces of c2r and c2c (PaddlePaddle#31) * Documentation of the common interfaces of c2r and c2c * clean c++ code (PaddlePaddle#32) * clean code * Add numpy-based implementation of spectral ops (PaddlePaddle#33) * add numpy reference implementation of spectral ops * Add fft_c2r numpy based implementation for unittest. (PaddlePaddle#34) * add fft_c2r numpy implementation * Add deframe op and stft/istft api. (#23) * Add frame api * Add deframe op and kernels. * Add stft and istft apis. * Add deframe api. Update stft and istft apis. * Fix bug in frame_from_librosa function when input dims >= 3 * Rename deframe to overlap_add. * Update istft. * Update after code review. * Add overlap_add op and stft/istft api unittest (PaddlePaddle#35) * Add overlap_add op unittest. * Register complex kernels of squeeze/unsquuze op. * Add stft/istft api unittest. * Add unittest for fft helper functions (PaddlePaddle#36) * add unittests for fft helper functions. add complex kernel for roll op. * complete static graph unittest for all public api (PaddlePaddle#37) * Unittest of op with FFT C2C, C2R and r2c added (PaddlePaddle#38) * documents and single case * test c2r case * New C2R Python layer normal and exception use cases * Documentation of the common interfaces of c2r and c2c * Unittest of op with FFT C2C, C2R and r2c added Co-authored-by: lijiaqi <lijiaqi0612@163.com> * add fft related options to CMakeLists.txt * fix typos and clean code (PaddlePaddle#39) * fix invisible character in mkl branch and fix error in error message * clean code: remove docstring from unittest for signal.py. * always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. (PaddlePaddle#40) * always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. * fix CI Errors: numpy dtype comparison, thrust when cuda is not available (PaddlePaddle#41) 1. always convert numpy array to paddle.Tensor to avoid comparing numpy dtype with paddle dtype. 2. promote floating point tensor to complex tensor ior fft_c2c and fft_c2r; 3. fix unittest to catch UnImplementedError and RuntimeError; 4. fix compile error by avoid using thrust when cuda is not available. 5. fix sample code, use paddle.fft instead of paddle.tensor.fft * remove inclusion of thrust, add __all__ list for fft (PaddlePaddle#42) * Add api doc and update unittest. (PaddlePaddle#43) * Add doc strings. * Update overlap_add op unittest * fix MKL-based FFT implementation (PaddlePaddle#44) * fix MKL-based FFT implementation, MKL CDFT's FORWARD DOMAIN is always REAL for R2C and C2R * remove code for debug (PaddlePaddle#45) * use dynload for cufft (PaddlePaddle#46) * use std::ptrdiff_t as datatype of stride (instead of int64_t) to avoid argument mismatch on some platforms. * add complex support for fill_zeros_like * use dynload for cufft * Update doc and unittest. (PaddlePaddle#47) * Add doc of frame op and overlap_add op. * Update unittest. * use dynload for cufft (PaddlePaddle#48) 1. use dynload for cufft 2. fix unittest; 3. temporarily disable Rocm. * fix conflicts and merge upstream (PaddlePaddle#49) fix conflicts and merge upstream * fix compile error: only link dyload_cuda when cuda is available (PaddlePaddle#50) * fix compile error: only link dyload_cuda when cuda is available * fix dynload for cufft on windows (PaddlePaddle#51) 1. fix dynload for cufft on windows; 2. fix unittests. * add NOMINMAX to compile on windows (PaddlePaddle#52) add NOMINMAX to compile on windows * explicitly specify capture mode for lambdas (PaddlePaddle#55) explicitly specify capture mode for lambdas * fix fft sample (PaddlePaddle#53) * fix fft sample * update scipy and numpy version for unittests of fft (PaddlePaddle#56) update scipy and numpy version for unittests of fft * Add static graph unittests of frame and overlap_add api. (PaddlePaddle#57) * Remove cache of cuFFT & Disable ONEMKL (PaddlePaddle#59) 1. replace numpy.fft with scipy.fft as numpy<1.20 not support ortho norm 2. remove cache of cufft plans; 3. enhance error checking. 4. default WITH_ONEMKL to OFF Co-authored-by: jeff41404 <jeff41404@gmail.com> Co-authored-by: root <root@bjyz-sys-gpu-kongming9.bjyz.baidu.com> Co-authored-by: KP <109694228@qq.com> Co-authored-by: lijiaqi <lijiaqi0612@163.com> Co-authored-by: Xiaoxu Chen <chenxx_id@163.com> Co-authored-by: lijiaqi0612 <33169170+lijiaqi0612@users.noreply.github.com>
…rface implement x86 device
Fix tokenizer_util padding
* add video restore tutorial
merge paddlepaddle master (#56)
* add support for universal input
fix ContinueMetricMsg bug
* Init pantheon * Update README * Fix pantheon import * Update README * Fix the possible bug when del student * Format docs of public methods * Add api guide & docs for pantheon * Use str2bool instead of bool
update op lower
optimize fused_seqpool_cvm ops host time 2.
When lstm run more than 2000 batches in first iteration, the error (float point exception) occurred! some print info as following:
I0909 17:38:59.281976 23954 TrainerInternal.cpp:162] Batch=2000 samples=128000 AvgCost=0.239344 CurrentCost=0.201116 Eval: classification_error_evaluator=0.0999063 CurrentEval: classification_error_evaluator=0.0798125$MYDIR/../opt/paddle/bin/paddle_trainer $ {@:2}
I0909 17:40:21.527977 23954 Tester.cpp:111] Test samples=25000 cost=0.184603 Eval: classification_error_evaluator=0.07068
.............................................................................................................................. .........................................................................................................................................................................................................................................................................................................................................................................................................................Current Layer forward/backward stack is
LayerName: lstmemory_0
LayerName: fc_layer_0
LayerName: embedding_0
LayerName: word
*** Aborted at 1473414360 (unix time) try "date -d @1473414360" if you are using GNU date ***
Current Layer forward/backward stack is
PC: @ 0x7f0182f0ab25 __ieee754_exp
Current Layer forward/backward stack is
*** SIGFPE (@0x7f0182f0ab25) received by PID 23954 (TID 0x7f017130c700) from PID 18446744071611394853; stack trace: ***
Current Layer forward/backward stack is
@ 0x7f018414d710 (unknown)
Current Layer forward/backward stack is
@ 0x7f0182f0ab25 __ieee754_exp
Current Layer forward/backward stack is
@ 0x7f0182f20b52 __GI___exp
Current Layer forward/backward stack is
@ 0x800235 hppl::tanh()
Current Layer forward/backward stack is
@ 0x587383 paddle::LstmCompute::forwardOneSequence<>()
Current Layer forward/backward stack is
@ 0x58788a paddle::LstmCompute::forwardBatch<>()
Current Layer forward/backward stack is
@ 0x581bdc paddle::LstmLayer::forwardBatch()
Current Layer forward/backward stack is
@ 0x58521a paddle::LstmLayer::forward()
Current Layer forward/backward stack is
@ 0x614b94 paddle::NeuralNetwork::forward()
Current Layer forward/backward stack is
@ 0x61efe6 paddle::TrainerThread::forward()
Current Layer forward/backward stack is
@ 0x621194 paddle::TrainerThread::computeThread()
Current Layer forward/backward stack is
@ 0x7f01832553d2 execute_native_thread_routine
Current Layer forward/backward stack is
@ 0x7f01841459d1 start_thread
Current Layer forward/backward stack is
@ 0x7f0182a3a8fd clone
/data11/dis_ml/deeplearning/paddle/bin/paddle: line 46: 23954 Floating point exception${DEBUGGER}
The text was updated successfully, but these errors were encountered: