-
Notifications
You must be signed in to change notification settings - Fork 5.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Row convolution operation. #2373
Merged
Merged
Changes from all commits
Commits
Show all changes
10 commits
Select commit
Hold shift + click to select a range
cb6436b
CPU implementation of row convolution
qingqing01 a181586
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
qingqing01 b3ac51f
GPU implementation of row conv.
qingqing01 b783e08
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
qingqing01 18cd1f2
Fix bug and Python API.
qingqing01 6e8c566
Add layers into doc.
qingqing01 a5dfc55
Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into…
qingqing01 37015fa
update code
qingqing01 f18d83f
follow comments
qingqing01 6bc9277
Merge branch 'develop' into row_conv
qingqing01 File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,225 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
|
||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
|
||
http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include "RowConvOp.h" | ||
#include <iostream> | ||
#include "paddle/math/Vector.h" | ||
|
||
namespace paddle { | ||
|
||
template <> | ||
void RowConv<DEVICE_TYPE_CPU>(CpuMatrix& out, | ||
const CpuMatrix& in, | ||
const CpuMatrix& filter, | ||
const CpuIVector& seq) { | ||
const int* starts = seq.getData(); | ||
const size_t numSeq = seq.getSize() - 1; | ||
const size_t contextLength = filter.getHeight(); | ||
for (size_t i = 0; i < numSeq; ++i) { | ||
size_t begin = starts[i]; | ||
size_t end = starts[i + 1]; | ||
for (size_t j = begin; j < end; ++j) { | ||
MatrixPtr x; | ||
MatrixPtr w; | ||
if ((j + contextLength) < end) { | ||
x = (const_cast<CpuMatrix&>(in)).subMatrix(j, contextLength); | ||
w = (const_cast<CpuMatrix&>(filter)).subMatrix(0, contextLength); | ||
} else { | ||
x = (const_cast<CpuMatrix&>(in)).subMatrix(j, end - j); | ||
w = (const_cast<CpuMatrix&>(filter)).subMatrix(0, end - j); | ||
} | ||
MatrixPtr y = out.subMatrix(j, 1); | ||
y->addDotMulVMM(*x, *w); | ||
} | ||
} | ||
} | ||
|
||
template <> | ||
void RowConvGrad<DEVICE_TYPE_CPU>(const CpuMatrix& outG, | ||
const CpuMatrix& in, | ||
const CpuMatrix& filter, | ||
CpuMatrix& inG, | ||
CpuMatrix& filterG, | ||
const CpuIVector& seq) { | ||
// gradient w.r.t filter | ||
const int* starts = seq.getData(); | ||
const size_t numSeq = seq.getSize() - 1; | ||
const size_t contextLength = filter.getHeight(); | ||
if (filterG) { | ||
for (size_t i = 0; i < numSeq; ++i) { | ||
size_t begin = starts[i]; | ||
size_t end = starts[i + 1]; | ||
size_t steps = end - begin; | ||
for (size_t j = 0; j < contextLength && (begin + j) < end; ++j) { | ||
MatrixPtr x = | ||
(const_cast<CpuMatrix&>(in)).subMatrix(begin + j, steps - j); | ||
MatrixPtr dy = | ||
(const_cast<CpuMatrix&>(outG)).subMatrix(begin, steps - j); | ||
MatrixPtr dw = filterG.subMatrix(j, 1); | ||
dw->addDotMulVMM(*dy, *x); | ||
} | ||
} | ||
} | ||
|
||
// gradient w.r.t input feature | ||
if (inG) { | ||
for (size_t i = 0; i < numSeq; ++i) { | ||
size_t begin = starts[i]; | ||
size_t end = starts[i + 1]; | ||
size_t steps = end - begin; | ||
for (size_t j = 0; j < steps; ++j) { | ||
MatrixPtr dx = inG.subMatrix(begin + j, 1); | ||
for (size_t t = 0; t < contextLength; ++t) { | ||
if (int(j - t) >= 0) { | ||
MatrixPtr dy = | ||
(const_cast<CpuMatrix&>(outG)).subMatrix(begin + j - t, 1); | ||
MatrixPtr w = (const_cast<CpuMatrix&>(filter)).subMatrix(t, 1); | ||
dx->addDotMul(*dy, *w, 1.0, 1.0); | ||
} | ||
} | ||
} | ||
} | ||
} | ||
} | ||
|
||
/** | ||
* \brief The row convolution is called lookahead convolution. It is firstly | ||
* introduced in deep-speech2 system. The bidirectional RNN that learns | ||
* representation for a sequence by performing a forward and a backward pass | ||
* through the entire sequence. However, unlike unidirectional RNNs, | ||
* bidirectional RNNs are challenging to deploy in an online and low-latency | ||
* setting. The lookahead convolution incorporates information from future | ||
* subsequences in a computationally efficient manner to improve unidirectional | ||
* recurrent neural networks. | ||
* | ||
* The connection of row convolution is different form the 1D sequence | ||
* convolution. Assumed that, the future context-length is k, that is to say, | ||
* it can get the output at timestep t by using the the input feature from t-th | ||
* timestep to (t+k)-th timestep. Assumed that the hidden dim of input | ||
* activations are d, the activations r_t for the new layer at time-step t are: | ||
* | ||
* | ||
* -- k + 1 | ||
* r(t,i) = > W(i,j) * h(t+j-1, i), for (1 <= i <= d) | ||
* -- j = 1 | ||
* | ||
* | ||
* The weight shape is: (k + 1) x d | ||
* Function Arguments: | ||
* | ||
* \param inputs[0] The input activations. | ||
* \param inputs[0] The filter (or weight) and shape is (k+1) x d. | ||
* \param outputs[1] The output activations. | ||
* | ||
* [1] Dario Amodei, etc. Deep Speech 2 : End-to-End Speech Recognition in | ||
* English | ||
* and Mandarin. https://arxiv.org/abs/1512.02595 | ||
*/ | ||
|
||
template <DeviceType Device> | ||
class RowConvFunc : public FunctionBase { | ||
public: | ||
void init(const FuncConfig& config) override {} | ||
|
||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { | ||
// check | ||
CHECK_EQ(2UL, inputs.size()); | ||
CHECK_EQ(1UL, outputs.size()); | ||
// TODO(qingqing): support ASSIGN_TO. | ||
CHECK_EQ(outputs[0].getArgType(), ADD_TO); | ||
CHECK(inputs[0].isSequenceArg() && outputs[0].isSequenceArg()) | ||
<< "SequenceArg required here."; | ||
const auto in = dynamic_cast<const SequenceArg&>(inputs[0]); | ||
auto out = dynamic_cast<const SequenceArg&>(outputs[0]); | ||
auto w = inputs[1]; | ||
CHECK(in.data() && out.data() && in.getSequenceId().data()); | ||
CHECK_EQ(in.shape().ndims(), 2UL); | ||
CHECK(in.shape() == out.shape()); | ||
CHECK_EQ(w.shape()[1], in.shape()[1]); | ||
|
||
auto outMat = out.matrix<Device>(); | ||
const auto inMat = in.matrix<Device>(); | ||
const auto wMat = w.matrix<Device>(); | ||
const auto seqId = in.getSequenceId().vector<int, Device>(); | ||
|
||
RowConv<Device>(outMat, inMat, wMat, seqId); | ||
} | ||
}; | ||
|
||
/** | ||
* \brief The backward of row convolution function. This function calculated | ||
* the gradient w.r.t filter and the gradient w.r.t input activations(or data). | ||
* | ||
* Argument in this Function: | ||
* | ||
* \param inputs[0] The gradient w.r.t output activations. | ||
* \param inputs[1] The input activations. | ||
* \param inputs[2] The filter (or weight) and shape is (k+1) x d. | ||
* \param outputs[0] The gradient w.r.t input activations. | ||
* \param outputs[1] The gradient w.r.r filter. | ||
* | ||
* Abbreviation: | ||
* w.r.t: with respect to. | ||
*/ | ||
|
||
template <DeviceType Device> | ||
class RowConvGradFunc : public FunctionBase { | ||
// TODO(qingqing): split into RowConvDataFunc and RowConvWeightFunc | ||
public: | ||
void init(const FuncConfig& config) override {} | ||
|
||
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override { | ||
// check | ||
CHECK_EQ(3UL, inputs.size()); | ||
CHECK_EQ(2UL, outputs.size()); | ||
CHECK_EQ(outputs[0].getArgType(), ADD_TO); | ||
CHECK_EQ(outputs[1].getArgType(), ADD_TO); | ||
CHECK(inputs[0].isSequenceArg() && inputs[1].isSequenceArg() && | ||
outputs[0].isSequenceArg()) | ||
<< "SequenceArg required here."; | ||
|
||
const auto outGrad = dynamic_cast<const SequenceArg&>(inputs[0]); | ||
const auto in = dynamic_cast<const SequenceArg&>(inputs[1]); | ||
const auto w = inputs[2]; | ||
auto inGrad = dynamic_cast<const SequenceArg&>(outputs[0]); | ||
auto wGrad = outputs[1]; | ||
|
||
CHECK_EQ(in.shape().ndims(), 2UL); | ||
CHECK(in.shape() == inGrad.shape()); | ||
CHECK(in.shape() == outGrad.shape()); | ||
CHECK_EQ(wGrad.shape()[1], in.shape()[1]); | ||
|
||
const auto outGMat = outGrad.matrix<Device>(); | ||
const auto inMat = in.matrix<Device>(); | ||
const auto wMat = w.matrix<Device>(); | ||
auto inGMat = inGrad.data() | ||
? inGrad.matrix<Device>() | ||
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0); | ||
auto wGMat = wGrad.data() | ||
? wGrad.matrix<Device>() | ||
: typename Tensor<real, Device>::Matrix(nullptr, 0, 0); | ||
const auto seqId = in.getSequenceId().vector<int, Device>(); | ||
|
||
RowConvGrad<Device>(outGMat, inMat, wMat, inGMat, wGMat, seqId); | ||
} | ||
}; | ||
|
||
REGISTER_TYPED_FUNC(RowConv, CPU, RowConvFunc); | ||
REGISTER_TYPED_FUNC(RowConvGrad, CPU, RowConvGradFunc); | ||
#ifndef PADDLE_ONLY_CPU | ||
REGISTER_TYPED_FUNC(RowConv, GPU, RowConvFunc); | ||
REGISTER_TYPED_FUNC(RowConvGrad, GPU, RowConvGradFunc); | ||
#endif | ||
|
||
} // namespace paddle |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,56 @@ | ||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#pragma once | ||
|
||
#include "Function.h" | ||
|
||
namespace paddle { | ||
|
||
/** | ||
* \brief The forward of row convolution. | ||
* | ||
* \param[out] out The output data and shape is h x d. h is the sum of | ||
* time steps of all samples in one mini-batch. | ||
* \param[in] in The input data and shape is h x d. | ||
* \param[in] filter The filter and shape is k x d. The lookahead step | ||
* number plus one equals k. | ||
* \param[in] seq The sequence start positions. | ||
* | ||
*/ | ||
template <DeviceType DType> | ||
void RowConv(typename Tensor<real, DType>::Matrix& out, | ||
const typename Tensor<real, DType>::Matrix& in, | ||
const typename Tensor<real, DType>::Matrix& filter, | ||
const typename Tensor<int, DType>::Vector& seq); | ||
|
||
/** | ||
* \brief The backward of row convolution. | ||
* | ||
* \param[in] outG The gradient w.r.t output data. | ||
* \param[in] in The input data. | ||
* \param[in] filter The filter. | ||
* \param[out] inG The gradient w.r.t input data. | ||
* \param[out] filterG The gradient w.r.t filter. | ||
* \param[in] seq The sequence start positions. | ||
* | ||
*/ | ||
template <DeviceType DType> | ||
void RowConvGrad(const typename Tensor<real, DType>::Matrix& outG, | ||
const typename Tensor<real, DType>::Matrix& in, | ||
const typename Tensor<real, DType>::Matrix& filter, | ||
typename Tensor<real, DType>::Matrix& inG, | ||
typename Tensor<real, DType>::Matrix& filterG, | ||
const typename Tensor<int, DType>::Vector& seq); | ||
} // namespace paddle |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这里,filterG和inG放在一个Kernel里实现并没有提高计算性能,还是写层两个Kernel函数实现较好。
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
加了TODO,后续PR再修改~