Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add xpu slice op #27349

Merged
merged 6 commits into from
Oct 13, 2020
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
190 changes: 190 additions & 0 deletions paddle/fluid/operators/xpu/slice_xpu_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef PADDLE_WITH_XPU

#include "paddle/fluid/operators/slice_op.h"
#include <algorithm>
#include <memory>
#include <string>
#include <vector>

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

template <typename DeviceContext, typename T>
class SliceXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto in = ctx.Input<framework::Tensor>("Input");
auto out = ctx.Output<framework::Tensor>("Out");
auto axes = ctx.Attr<std::vector<int>>("axes");
auto starts = ctx.Attr<std::vector<int>>("starts");
auto ends = ctx.Attr<std::vector<int>>("ends");
auto in_dims = in->dims();

// prepare starts, ends on XPU
int dim_value = 0, start = 0, end = 0;
// If a negative value is passed for any of the start or end indices,
// it represents number of elements before the end of that dimension.
// If the value passed to start or end is larger than the n
// (the number of elements in this dimension), it represents n.
for (size_t i = 0; i < axes.size(); ++i) {
dim_value = in_dims[axes[i]];
start = starts[i];
end = ends[i];
start = start < 0 ? (start + dim_value) : start;
end = end < 0 ? (end + dim_value) : end;
start = std::max(start, 0);
end = std::max(end, 0);
end = std::min(end, dim_value);
PADDLE_ENFORCE_GT(end, start, "end should greater than start");
starts[i] = start;
ends[i] = end;
}
size_t shape_size = in_dims.size();
// the slice XPU kernel require that the length of `start`, `end` must be equal
// to the dims size of input tensor, therefore, if shape_size > axes.size(),
// the `starts_extension` and `ends_extension` is necessary.
std::vector<int> starts_extension(shape_size, 0);
std::vector<int> ends_extension(shape_size, 0);
if (shape_size > axes.size()) {
for (size_t i = 0; i < shape_size; ++i){
ends_extension[i] = in_dims[i];
}
for (size_t i = 0; i < axes.size(); ++i) {
starts_extension[axes[i]] = starts[i];
ends_extension[axes[i]] = ends[i];
}
} else {
starts_extension = std::move(starts);
ends_extension = std::move(ends);
}

// prepare shape on XPU
std::vector<int> shape(shape_size, 0);
for (size_t i = 0; i < shape_size; ++i) {
shape[i] = in_dims[i];
}

auto& dev_ctx = ctx.template device_context<DeviceContext>();
auto* in_data = in->data<T>();
auto* out_data = out->mutable_data<T>(ctx.GetPlace());

int r = xpu::slice_forward(dev_ctx.x_context(), shape.data(),
starts_extension.data(), ends_extension.data(),
shape_size, in_data, out_data);
PADDLE_ENFORCE(r == xpu::Error_t::SUCCESS, "XPU kernel error!");
}
};

template <typename DeviceContext, typename T>
class SliceGradXPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* d_in = ctx.Output<framework::Tensor>(framework::GradVarName("Input"));
d_in->mutable_data<T>(ctx.GetPlace());

auto in_dims = d_in->dims();
auto axes = ctx.Attr<std::vector<int>>("axes");
auto starts = ctx.Attr<std::vector<int>>("starts");
auto ends = ctx.Attr<std::vector<int>>("ends");

// prepare starts, ends on XPU
int dim_value = 0, start = 0, end = 0;
// If a negative value is passed for any of the start or end indices,
// it represents number of elements before the end of that dimension.
// If the value passed to start or end is larger than the n
// (the number of elements in this dimension), it represents n.
for (size_t i = 0; i < axes.size(); ++i) {
dim_value = in_dims[axes[i]];
start = starts[i];
end = ends[i];
start = start < 0 ? (start + dim_value) : start;
end = end < 0 ? (end + dim_value) : end;
start = std::max(start, 0);
end = std::max(end, 0);
end = std::min(end, dim_value);
PADDLE_ENFORCE_GT(end, start, "end should greater than start");
starts[i] = start;
ends[i] = end;
}
size_t shape_size = in_dims.size();
// the slice XPU kernel require that the length of `start`, `end` must be equal
// to the dims size of input tensor, therefore, if shape_size > axes.size(),
// the `starts_extension` and `ends_extension` is necessary.
std::vector<int> starts_extension(shape_size, 0);
std::vector<int> ends_extension(shape_size, 0);
if (shape_size > axes.size()) {
for (size_t i = 0; i < shape_size; ++i){
ends_extension[i] = in_dims[i];
}
for (size_t i = 0; i < axes.size(); ++i) {
starts_extension[axes[i]] = starts[i];
ends_extension[axes[i]] = ends[i];
}
}
int* starts_device = nullptr;
int* ends_device = nullptr;
int* starts_host = shape_size > axes.size() ?
starts_extension.data() : starts.data();
int* ends_host = shape_size > axes.size() ?
ends_extension.data() : ends.data();
PADDLE_ENFORCE(xpu_malloc((void**)(&starts_device), shape_size * sizeof(int)) == XPU_SUCCESS);
PADDLE_ENFORCE(xpu_malloc((void**)(&ends_device), shape_size * sizeof(int)) == XPU_SUCCESS);
memory::Copy(boost::get<platform::XPUPlace>(ctx.GetPlace()), starts_device,
platform::CPUPlace(), starts_host,
shape_size * sizeof(int));
memory::Copy(boost::get<platform::XPUPlace>(ctx.GetPlace()), ends_device,
platform::CPUPlace(), ends_host,
shape_size * sizeof(int));

// prepare shape on XPU
std::vector<int> shape(shape_size, 0);
for (size_t i = 0; i < shape_size; ++i) {
shape[i] = in_dims[i];
}
int* shape_device = nullptr;
PADDLE_ENFORCE(xpu_malloc((void**)(&shape_device), shape_size * sizeof(int)) == XPU_SUCCESS);
memory::Copy(boost::get<platform::XPUPlace>(ctx.GetPlace()), shape_device,
platform::CPUPlace(), shape.data(),
shape_size * sizeof(int));

auto& dev_ctx = ctx.template device_context<DeviceContext>();
int r = xpu::slice_backward(dev_ctx.x_context(),
shape_device, starts_device, ends_device,
shape_size, d_out->data<T>(), d_in->data<T>(),
d_in->numel(), d_out->numel());
PADDLE_ENFORCE(r == xpu::Error_t::SUCCESS, "XPU kernel error!");
dev_ctx.Wait();
// free device data
xpu_free(shape_device);
xpu_free(starts_device);
xpu_free(ends_device);
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_XPU_KERNEL(slice,
ops::SliceXPUKernel<paddle::platform::XPUDeviceContext, float>);
REGISTER_OP_XPU_KERNEL(slice_grad,
ops::SliceGradXPUKernel<paddle::platform::XPUDeviceContext, float>);
#endif
115 changes: 115 additions & 0 deletions python/paddle/fluid/tests/unittests/test_slice_op.py
Original file line number Diff line number Diff line change
Expand Up @@ -677,6 +677,121 @@ def test_input_cuda_pinned_var(self):
zero_copy=False)
sliced = var[:, 10:, :var.shape[1]]
self.assertEqual(sliced.shape, [2, 70, 80])
# for xpu
@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuSliceOp(TestSliceOp):
def test_check_output(self):
place = core.XPUPlace(0)
self.check_output_with_place(place)

def test_check_grad_normal(self):
place = core.XPUPlace(0)
self.check_grad_with_place(
place, ['Input'], 'Out', max_relative_error=0.006)


@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuCase1(TestXpuSliceOp):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
self.starts = [-3, 0, 2]
self.ends = [3, 100, -1]
self.axes = [0, 1, 2]
self.infer_flags = [1, 1, 1]
self.out = self.input[-3:3, 0:100, 2:-1, :]


@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuCase2(TestXpuSliceOp):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
self.starts = [-3, 0, 2]
self.ends = [3, 100, -1]
self.axes = [0, 1, 3]
self.infer_flags = [1, 1, 1]
self.out = self.input[-3:3, 0:100, :, 2:-1]


# 1.2 with attr(decrease)
@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuSliceOp_decs_dim(TestSliceOp_decs_dim):
def test_check_output(self):
place = core.XPUPlace(0)
self.check_output_with_place(place)

def test_check_grad_normal(self):
place = core.XPUPlace(0)
self.check_grad_with_place(
place, ['Input'], 'Out', max_relative_error=0.006)


@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuSliceOp_decs_dim_2(TestXpuSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
self.starts = [1, 0, 2]
self.ends = [2, 1, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0, 1]
self.infer_flags = [1, 1, 1]
self.out = self.input[1, 0, 2:4, :]


@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuSliceOp_decs_dim_3(TestXpuSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
self.starts = [-1, 0, 2]
self.ends = [1000000, 1, 4]
self.axes = [0, 1, 2]
self.decrease_axis = [0, 1]
self.infer_flags = [1, 1, 1]
self.out = self.input[-1, 0, 2:4, :]


@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuSliceOp_decs_dim_4(TestXpuSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 7]).astype("float64")
self.starts = [0, 1, 2, 3]
self.ends = [1, 2, 3, 4]
self.axes = [0, 1, 2, 3]
self.decrease_axis = [0, 1, 2, 3]
self.infer_flags = [1, 1, 1]
self.out = self.input[0, 1, 2, 3:4]


@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuSliceOp_decs_dim_5(TestXpuSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
self.starts = [-1]
self.ends = [1000000]
self.axes = [3]
self.decrease_axis = [3]
self.infer_flags = [1, 1, 1]
self.out = self.input[:, :, :, -1]


@unittest.skipIf(not core.is_compiled_with_xpu(),
"core is not compiled with XPU")
class TestXpuSliceOp_decs_dim_6(TestXpuSliceOp_decs_dim):
def config(self):
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
self.starts = [0, 1, 2, 3]
self.ends = [1, 2, 3, 4]
self.axes = [0, 1, 2, 3]
self.decrease_axis = [0, 1, 2, 3]
self.infer_flags = [1, 1, 1]
self.out = self.input[0, 1, 2, 3:4]


if __name__ == '__main__':
Expand Down