Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[API 2.0]Update 2.0 api from fluid to paddle. #27598

Merged
merged 6 commits into from
Sep 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions python/paddle/fluid/executor.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,12 +94,13 @@ def scope_guard(scope):
Examples:
.. code-block:: python

import paddle.fluid as fluid
import paddle
import numpy
paddle.enable_static()

jiweibo marked this conversation as resolved.
Show resolved Hide resolved
new_scope = fluid.Scope()
with fluid.scope_guard(new_scope):
fluid.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), fluid.CPUPlace())
new_scope = paddle.static.Scope()
with paddle.static.scope_guard(new_scope):
paddle.static.global_scope().var("data").get_tensor().set(numpy.ones((2, 2)), paddle.CPUPlace())
numpy.array(new_scope.find_var("data").get_tensor())
"""

Expand Down
60 changes: 32 additions & 28 deletions python/paddle/fluid/layers/nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -13510,15 +13510,15 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
"""
:api_attr: Static Graph

This OP is used to register customized Python OP to Paddle Fluid. The design
principe of py_func is that LodTensor and numpy array can be converted to each
This OP is used to register customized Python OP to Paddle. The design
principe of py_func is that Tensor and numpy array can be converted to each
other easily. So you can use Python and numpy API to register a python OP.

The forward function of the registered OP is ``func`` and the backward function
of that is ``backward_func``. Paddle will call ``func`` at forward runtime and
call ``backward_func`` at backward runtime(if ``backward_func`` is not None).
``x`` is the input of ``func``, whose type must be LoDTensor; ``out`` is
the output of ``func``, whose type can be either LoDTensor or numpy array.
``x`` is the input of ``func``, whose type must be Tensor; ``out`` is
the output of ``func``, whose type can be either Tensor or numpy array.

The input of the backward function ``backward_func`` is ``x``, ``out`` and
the gradient of ``out``. If some variables of ``out`` have no gradient, the
Expand All @@ -13536,14 +13536,14 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
func (callable): The forward function of the registered OP. When the network
is running, the forward output ``out`` will be calculated according to this
function and the forward input ``x``. In ``func`` , it's suggested that we
actively convert LoDTensor into a numpy array, so that we can use Python and
actively convert Tensor into a numpy array, so that we can use Python and
numpy API arbitrarily. If not, some operations of numpy may not be compatible.
x (Variable|tuple(Variale)|list[Variale]): The input of the forward function ``func``.
It can be Variable|tuple(Variale)|list[Variale], where Variable is LoDTensor or
It can be Variable|tuple(Variale)|list[Variale], where Variable is Tensor or
Tenosor. In addition, Multiple Variable should be passed in the form of tuple(Variale)
jiweibo marked this conversation as resolved.
Show resolved Hide resolved
or list[Variale].
out (Variable|tuple(Variale)|list[Variale]): The output of the forward function ``func``,
it can be Variable|tuple(Variale)|list[Variale], where Variable can be either LoDTensor
it can be Variable|tuple(Variale)|list[Variale], where Variable can be either Tensor
or numpy array. Since Paddle cannot automatically infer the shape and type of ``out``,
you must create ``out`` in advance.
backward_func (callable, optional): The backward function of the registered OP.
Expand All @@ -13564,16 +13564,18 @@ def py_func(func, x, out, backward_func=None, skip_vars_in_backward_input=None):
.. code-block:: python

# example 1:
import paddle.fluid as fluid
import paddle
import six

# Creates a forward function, LodTensor can be input directly without
paddle.enable_static()

# Creates a forward function, Tensor can be input directly without
# being converted into numpy array.
def tanh(x):
return np.tanh(x)

# Skip x in backward function and return the gradient of x
# LodTensor must be actively converted to numpy array, otherwise,
# Tensor must be actively converted to numpy array, otherwise,
# operations such as +/- can't be used.
def tanh_grad(y, dy):
return np.array(dy) * (1 - np.square(np.array(y)))
Expand All @@ -13583,36 +13585,38 @@ def debug_func(x):
print(x)

def create_tmp_var(name, dtype, shape):
return fluid.default_main_program().current_block().create_var(
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)

def simple_net(img, label):
hidden = img
for idx in six.moves.range(4):
hidden = fluid.layers.fc(hidden, size=200)
hidden = paddle.static.nn.fc(hidden, size=200)
new_hidden = create_tmp_var(name='hidden_{}'.format(idx),
dtype=hidden.dtype, shape=hidden.shape)

# User-defined forward and backward
hidden = fluid.layers.py_func(func=tanh, x=hidden,
hidden = paddle.static.nn.py_func(func=tanh, x=hidden,
out=new_hidden, backward_func=tanh_grad,
skip_vars_in_backward_input=hidden)

# User-defined debug functions that print out the input LodTensor
fluid.layers.py_func(func=debug_func, x=hidden, out=None)
# User-defined debug functions that print out the input Tensor
paddle.static.nn.py_func(func=debug_func, x=hidden, out=None)

prediction = fluid.layers.fc(hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
return fluid.layers.mean(loss)
prediction = paddle.static.nn.fc(hidden, size=10, act='softmax')
loss = paddle.static.nn.cross_entropy(input=prediction, label=label)
return paddle.mean(loss)

# example 2:
# This example shows how to turn LoDTensor into numpy array and
# This example shows how to turn Tensor into numpy array and
# use numpy API to register an Python OP
import paddle.fluid as fluid
import paddle
import numpy as np

paddle.enable_static()

def element_wise_add(x, y):
# LodTensor must be actively converted to numpy array, otherwise,
# Tensor must be actively converted to numpy array, otherwise,
# numpy.shape can't be used.
x = np.array(x)
y = np.array(y)
Expand All @@ -13628,24 +13632,24 @@ def element_wise_add(x, y):
return result

def create_tmp_var(name, dtype, shape):
return fluid.default_main_program().current_block().create_var(
return paddle.static.default_main_program().current_block().create_var(
name=name, dtype=dtype, shape=shape)

def py_func_demo():
start_program = fluid.default_startup_program()
main_program = fluid.default_main_program()
start_program = paddle.static.default_startup_program()
main_program = paddle.static.default_main_program()

# Input of the forward function
x = fluid.data(name='x', shape=[2,3], dtype='int32')
y = fluid.data(name='y', shape=[2,3], dtype='int32')
x = paddle.static.data(name='x', shape=[2,3], dtype='int32')
y = paddle.static.data(name='y', shape=[2,3], dtype='int32')

# Output of the forward function, name/dtype/shape must be specified
output = create_tmp_var('output','int32', [3,1])

# Multiple Variable should be passed in the form of tuple(Variale) or list[Variale]
fluid.layers.py_func(func=element_wise_add, x=[x,y], out=output)
paddle.static.nn.py_func(func=element_wise_add, x=[x,y], out=output)

exe=fluid.Executor(fluid.CPUPlace())
exe=paddle.static.Executor(paddle.CPUPlace())
exe.run(start_program)

# Feed numpy array to main_program
Expand Down
12 changes: 6 additions & 6 deletions python/paddle/fluid/layers/tensor.py
Original file line number Diff line number Diff line change
Expand Up @@ -103,9 +103,9 @@ def create_parameter(shape,
Examples:
.. code-block:: python

import paddle.fluid as fluid
import paddle.fluid.layers as layers
W = layers.create_parameter(shape=[784, 200], dtype='float32')
import paddle
jiweibo marked this conversation as resolved.
Show resolved Hide resolved
paddle.enable_static()
W = paddle.static.create_parameter(shape=[784, 200], dtype='float32')
"""
check_type(shape, 'shape', (list, tuple, numpy.ndarray), 'create_parameter')
for item in shape:
Expand Down Expand Up @@ -161,9 +161,9 @@ def create_global_var(shape,
Examples:
.. code-block:: python

import paddle.fluid as fluid
import paddle.fluid.layers as layers
var = layers.create_global_var(shape=[2,3], value=1.0, dtype='float32',
import paddle
jiweibo marked this conversation as resolved.
Show resolved Hide resolved
paddle.enable_static()
var = paddle.static.create_global_var(shape=[2,3], value=1.0, dtype='float32',
persistable=True, force_cpu=True, name='new_var')
"""
check_type(shape, 'shape', (list, tuple, numpy.ndarray),
Expand Down
20 changes: 10 additions & 10 deletions python/paddle/fluid/param_attr.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,15 +61,15 @@ class ParamAttr(object):
Examples:
.. code-block:: python

import paddle.fluid as fluid

w_param_attrs = fluid.ParamAttr(name="fc_weight",
learning_rate=0.5,
regularizer=fluid.regularizer.L2Decay(1.0),
trainable=True)
print(w_param_attrs.name) # "fc_weight"
x = fluid.data(name='X', shape=[None, 1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=10, param_attr=w_param_attrs)
import paddle
paddle.enable_static()
jiweibo marked this conversation as resolved.
Show resolved Hide resolved
jiweibo marked this conversation as resolved.
Show resolved Hide resolved

weight_attr = paddle.ParamAttr(name="weight",
learning_rate=0.5,
regularizer=paddle.regularizer.L2Decay(1.0),
trainable=True)
print(weight_attr.name) # "weight"
paddle.nn.Linear(3, 4, weight_attr=weight_attr)
"""

def __init__(self,
Expand Down Expand Up @@ -202,7 +202,7 @@ def _to_kwargs(self, with_initializer=False):

class WeightNormParamAttr(ParamAttr):
"""
:api_attr: Static Graph
:api_attr: Static Graph

Note:
Please use 'paddle.nn.utils.weight_norm' in dygraph mode.
Expand Down
3 changes: 3 additions & 0 deletions python/paddle/static/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
]

from . import nn
from ..fluid import Scope #DEFINE_ALIAS
from .input import data #DEFINE_ALIAS
from .input import InputSpec #DEFINE_ALIAS
from ..fluid.executor import Executor #DEFINE_ALIAS
Expand All @@ -48,3 +49,5 @@
from ..fluid.io import load_inference_model #DEFINE_ALIAS
from ..fluid.io import load_program_state #DEFINE_ALIAS
from ..fluid.io import set_program_state #DEFINE_ALIAS
from ..fluid.layers import create_parameter #DEFINE_ALIAS
from ..fluid.layers import create_global_var #DEFINE_ALIAS
2 changes: 2 additions & 0 deletions python/paddle/static/nn/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,7 @@
'multi_box_head',
'nce',
'prelu',
'py_func',
'row_conv',
'spectral_norm',
]
Expand All @@ -54,6 +55,7 @@
from ...fluid.layers import multi_box_head #DEFINE_ALIAS
from ...fluid.layers import nce #DEFINE_ALIAS
from ...fluid.layers import prelu #DEFINE_ALIAS
from ...fluid.layers import py_func #DEFINE_ALIAS
from ...fluid.layers import row_conv #DEFINE_ALIAS
from ...fluid.layers import spectral_norm #DEFINE_ALIAS

Expand Down
1 change: 0 additions & 1 deletion tools/wlist.json
Original file line number Diff line number Diff line change
Expand Up @@ -279,7 +279,6 @@
"thresholded_relu",
"group_norm",
"random_crop",
"py_func",
"row_conv",
"hard_shrink",
"ssd_loss",
Expand Down