Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix summary api for rnn gru lstm #28566

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions python/paddle/hapi/model_summary.py
Original file line number Diff line number Diff line change
Expand Up @@ -244,6 +244,9 @@ def hook(layer, input, output):
(not (layer == model) or depth < 1)):

hooks.append(layer.register_forward_post_hook(hook))
# For rnn, gru and lstm layer
elif hasattr(layer, 'could_use_cudnn') and layer.could_use_cudnn:
hooks.append(layer.register_forward_post_hook(hook))

if isinstance(input_size, tuple):
input_size = [input_size]
Expand Down
29 changes: 27 additions & 2 deletions python/paddle/tests/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -295,6 +295,12 @@ def test_predict_without_inputs(self):
np.testing.assert_equal(output[0].shape[0], len(self.test_dataset))
fluid.disable_dygraph()

def test_summary_gpu(self):
paddle.disable_static(self.device)
rnn = paddle.nn.LSTM(16, 32, 2)
params_info = paddle.summary(
rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])


class MyModel(paddle.nn.Layer):
def __init__(self):
Expand Down Expand Up @@ -512,14 +518,33 @@ def _get_param_from_state_dict(state_dict):
model.summary(input_size=(20), dtype='float32')

def test_summary_nlp(self):
paddle.enable_static()
def _get_param_from_state_dict(state_dict):
params = 0
for k, v in state_dict.items():
params += np.prod(v.numpy().shape)
return params

nlp_net = paddle.nn.GRU(input_size=2,
hidden_size=3,
num_layers=3,
direction="bidirectional")
paddle.summary(nlp_net, (1, 1, 2))

rnn = paddle.nn.LSTM(16, 32, 2)
paddle.summary(rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
params_info = paddle.summary(
rnn, [(-1, 23, 16), ((2, None, 32), (2, -1, 32))])
gt_params = _get_param_from_state_dict(rnn.state_dict())
np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

rnn = paddle.nn.GRU(16, 32, 2, direction='bidirectional')
params_info = paddle.summary(rnn, (4, 23, 16))
gt_params = _get_param_from_state_dict(rnn.state_dict())
np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

rnn = paddle.nn.SimpleRNN(16, 32, 2, direction='bidirectional')
params_info = paddle.summary(rnn, (4, 23, 16))
gt_params = _get_param_from_state_dict(rnn.state_dict())
np.testing.assert_allclose(params_info['total_params'], gt_params / 2.0)

def test_summary_dtype(self):
input_shape = (3, 1)
Expand Down