Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Build parser to support distributed training #30658

Merged
merged 3 commits into from
Jan 25, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -18,11 +18,17 @@
import paddle.fluid.core as core
import numpy as np
from . import ascend_parser
from paddle.distributed import fleet
import hccl.manage.api as hccl
from collections import namedtuple

HcomGroupConfig = namedtuple('HcomGroupConfig', ['name', 'nranks', 'rank_ids'])

class AscendIRParser(object):
def __init__(self):
self.graph_idx = 0
self.hcom_endpoints = {}
self.groups_to_create = []

def _construct_input_map(self, input_varlist):
ret_map = {}
Expand All @@ -38,8 +44,37 @@ def _construct_input_map(self, input_varlist):
ret_map[var.name] = ge_input
return ge_in_operator, ret_map

def _endpoint_to_world_rank_id(self, endpoint):
world_endpoints = fleet.worker_endpoints()
assert endpoint in world_endpoints, "endpoint (%s) not in worker_endpoints (%s) " % (endpoint, fleet.world_device_ids())
return world_endpoints.index(endpoint)

def parse_op(self, op):
if op.type in ascend_parser.registerd_op:
if op.type == 'c_gen_nccl_id':
endpoint = op.attr("endpoint")
other_endpoints = op.attr("other_endpoints")
rank = op.attr("rank")

nccl_id = op.output_arg_names[0]

# c_gen_nccl_id operator splits endpoints into local endpoint and other_endpoints
# we should combine these together to produce world_rank_ids
self.hcom_endpoints[nccl_id] = other_endpoints[:]
self.hcom_endpoints[nccl_id].insert(rank, endpoint)

print("nccl_id (%s) registered endpoints %s" % (nccl_id, self.hcom_endpoints[nccl_id]))
elif op.type == 'c_comm_init':
nccl_id = op.input_arg_names[0]
nranks = op.attr("nranks")
assert nranks == len(self.hcom_endpoints[nccl_id]), "nranks doesn't match endpoint count"
rank = op.attr("rank")
ring_id = op.attr("ring_id")

group_name = "hcom_group_" + str(ring_id)
global_rank_ids = [self._endpoint_to_world_rank_id(endpoint) for endpoint in self.hcom_endpoints[nccl_id]]
self.groups_to_create.append(HcomGroupConfig(name=group_name, nranks=nranks, rank_ids=global_rank_ids))
print("append to create group: %s, with rank_ids: %s" % (group_name, global_rank_ids))
elif op.type in ascend_parser.registerd_op:
print("Op[%s] has been registered, begin to parse it" % (op.type))
op_parser = self.parser_factory.create_parse(ascend_parser.registerd_op[op.type])
op_parser.apply(op)
Expand Down Expand Up @@ -137,7 +172,9 @@ def minimize(self,
parameter_list=None,
no_grad_set=None,
auto_dp=False):
minimized = self.inner_opt.minimize(loss, startup_program=startup_program)
minimized = None
if self.inner_opt:
minimized = self.inner_opt.minimize(loss, startup_program=startup_program)

self.ascend_instance = core.AscendInstance()

Expand Down Expand Up @@ -172,6 +209,10 @@ def minimize(self,
startup_graph, main_graph = self.parser.parse_program(
startup_program, main_block.program, input_varlist, self.fetch_list)

for cfg in self.parser.groups_to_create:
hccl.create_group(cfg.name, cfg.nranks, cfg.rank_ids)
print("create group (%s), nranks: %d, rank_ids: %s" % (cfg.name, cfg.nranks, cfg.rank_ids))

self.ascend_instance.add_ascend_subgraph(0, startup_graph)
self.ascend_instance.add_ascend_subgraph(1, main_graph)

Expand Down
Original file line number Diff line number Diff line change
@@ -1,21 +1,21 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
# http://www.apache.org/licenses/LICENSE-2.0
#
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid.framework as framework
from paddle.fluid.optimizer import Optimizer
import paddle.fluid.core as core
import numpy as np
from paddle.distributed import fleet

registerd_op = {
"elementwise_add": "AddParser",
Expand Down Expand Up @@ -555,7 +555,8 @@ def __init__(self, graph, var2geop, reduction):
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
reduction = self.reduction
group = "hccl_world_group" #self.op.attr("group")
ring_id = self.op.attr("ring_id")
group = "hcom_group_" + str(ring_id)
fusion = None #self.op.attr("fusion")
fusion_id = None #self.op.attr("fusion_id")

Expand Down Expand Up @@ -658,12 +659,13 @@ def _apply(self):
"shape", shape).set_attr_int32("dtype", dtype)
return [receive], [[0]]


class ScaleParser(AscendParserBase):
def __init__(self, graph, var2geop):
super(ScaleParser, self).__init__(graph, var2geop)
self.parser_name = "scale"

def _apply(self):
def _apply(self):
x = self._get_ge_input(self.op.input_arg_names[0])
scale = self.op.attr("scale") #self.get_ge_input(self.op.input_arg_names[1])
bias = self.op.attr("bias")
Expand All @@ -672,9 +674,9 @@ def _apply(self):
scale_value = core.GEOperatorFactory.create_operator("scale" + self._accumulated_op_id(), "Power").set_input("x", x).set_attr_float("power", 1.0).set_attr_float("scale", scale).set_attr_float("shift", bias)
else:
x_add_bias = core.GEOperatorFactory.create_operator("adds" + self._accumulated_op_id(), "Adds").set_input("x", x).set_attr_float("value", bias) #set_input("x2", bias)
scale_value = core.GEOperatorFactory.create_operator("scale" + self._accumulated_op_id(), "Power").set_input("x", x_add_bias).set_attr_float("power", 1.0).set_attr_float("scale", scale).set_attr_float("shift", 0.0)
scale_value = core.GEOperatorFactory.create_operator("scale" + self._accumulated_op_id(), "Power").set_input("x", x_add_bias).set_attr_float("power", 1.0).set_attr_float("scale", scale).set_attr_float("shift", 0.0)
#tensor_zeros = core.GEOperatorFactory.create_operator("zeroslike" + self.getid(), "ZerosLike").set_input("x", x)
#bias_ = self.create_ge_tensor([1], 5, bias)
#bias_ = self.create_ge_tensor([1], 5, bias)
#const_bias = core.GEOperatorFactory.create_operator("const" + self.getid(), "Const").set_attr_tensor("value", tensor_bias)
return [scale_value],[[0]]

Expand All @@ -695,5 +697,7 @@ def _apply(self):
tensor = self._create_ge_tensor([len(shape)], 2, shape)
const_shape = core.GEOperatorFactory.create_operator("shape" + self._accumulated_op_id(), "Const").set_attr_tensor("value", tensor)
reshape = core.GEOperatorFactory.create_operator("reshape" + self._accumulated_op_id(), "Reshape").set_input("x", data_x1_shape).set_input("shape", const_shape).set_attr_int32("axis", axis)

return [reshape, reshape], [[0],[1]]


27 changes: 23 additions & 4 deletions python/paddle/fluid/tests/unittests/ascend_group.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,11 @@
import paddle
from paddle.fluid.layer_helper import LayerHelper
from paddle.distributed import fleet
from paddle.distributed.fleet.meta_optimizers.ascend import ascend_parser, ascend_optimizer
from collections import namedtuple

Block = namedtuple('Block', ['program'])
Loss = namedtuple('Loss', ['block'])

paddle.enable_static()

Expand Down Expand Up @@ -63,10 +68,6 @@ def init_communicator(startup_program, main_program, current_endpoint, endpoints
'ring_id': ring_id,
OP_ROLE_KEY: OpRole.Forward,
})
block.create_var(
name="data",
persistable=True,
dtype='float32')

with fluid.program_guard(main_program):
op_type="c_allreduce_sum"
Expand All @@ -79,6 +80,9 @@ def init_communicator(startup_program, main_program, current_endpoint, endpoints
attrs={'ring_id': ring_id,
'use_calc_stream': True})

print("startup program:", startup_program)
print("main program:", main_program)

def train(world_endpoints, world_device_ids, local_device_ids,local_rank):
startup_programs=[]
main_programs=[]
Expand All @@ -89,6 +93,7 @@ def train(world_endpoints, world_device_ids, local_device_ids,local_rank):
groups[0]=[trainer_endpoints[0], trainer_endpoints[1]]
groups[1]=[trainer_endpoints[2], trainer_endpoints[3]]
groups[2]=[trainer_endpoints[0], trainer_endpoints[2]]
print("groups:", groups)

for i in range(len(trainer_endpoints)):
startup_programs.append(fluid.Program())
Expand All @@ -105,6 +110,20 @@ def train(world_endpoints, world_device_ids, local_device_ids,local_rank):
print(startup_programs[local_rank])
print(main_programs[local_rank])

print("local rank: ", local_rank)
print("local startup program: ", startup_programs[local_rank])

startup_program = startup_programs[local_rank]
main_program = main_programs[local_rank]
loss = Loss(Block(main_program))
optimizer = ascend_optimizer.AscendOptimizer(None, fetch_list=[])
optimizer.minimize(loss, startup_program, auto_dp=True)

exe = paddle.static.Executor(paddle.CPUPlace())
#exe.run(startup_program)
exe.run(main_program)


worker_endpoints=fleet.worker_endpoints()
world_device_ids=fleet.world_device_ids()
local_device_ids=fleet.local_device_ids()
Expand Down