Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【NPU】Support npu kernel for reshape2 op #31524

Merged
merged 2 commits into from
Mar 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
87 changes: 87 additions & 0 deletions paddle/fluid/operators/reshape2_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class Reshape2NPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* shape = ctx.Attr<std::vector<int>>> ("shape");
auto* out = ctx.Output<framework::Tensor>("Out");
auto org_shape = framework::vectorize(x->dims());
// reshape
int64_t shape_all = 1;
int64_t org_shape_all = 1;
int index = -1;
for (int i = 0; i < shape.size(); i++) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

建议判断一下shape.size和org_shape.size是否相等

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

可以不相等

if (shape[i] == 0) {
shape[i] = org_shape[i];
}
if (shape[i] == -1) {
index = i;
} else {
shape_all *= shape[i];
}
org_shape_all *= org_shape[i];
}

if (index >= 0) {
shape[index] = org_shape_all / shape_all;
}
out.Resize(framework::make_ddim(shape));
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

是否跟55行的重复?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

参照的.h实现的 秋良可以帮忙看一下是否需要

out->mutable_data(ctx.GetPlace(), x->type());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
out.Resize(framework::make_ddim(shape));
}
};

template <typename DeviceContext, typename T>
class Reshape2GradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* d_x = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* d_out = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto in_dims = d_x->dims();

d_x->mutable_data(ctx.GetPlace(), d_out->type());
framework::TensorCopy(
*d_out, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), d_x);
d_x->Resize(in_dims);
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
reshpe2, ops::Reshape2NPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Reshape2NPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
reshpe2_grad,
ops::Reshape2GradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::Reshape2GradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
141 changes: 141 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_reshape2_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,141 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReshape2(OpTest):
def setUp(self):
self.set_npu()
self.op_type = "reshape2"
self.place = paddle.NPUPlace(0)

self.init_data()
self.inputs = {"X": np.random.random(self.ori_shape).astype("float32")}
self.attrs = {"shape": self.new_shape}
self.outputs = {
"Out": self.inputs["X"].reshape(self.infered_shape),
'XShape': np.random.random(self.ori_shape).astype("float32")
}

def set_npu(self):
self.__class__.use_npu = True

def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (12, 10)
self.infered_shape = (12, 10)

def test_check_output(self):
self.check_output(
self.place, check_dygraph=False, no_check_set=['XShape'])


class TestReshape2_case2(TestReshape2):
def init_data(self):
self.ori_shape = (2, 60)
self.new_shape = (-1, 10)
self.infered_shape = (12, 10)


class TestReshape2_case3(TestReshape2):
def init_data(self):
self.ori_shape = (2, 5, 6)
self.new_shape = (-1, 0, 3)
self.infered_shape = (4, 5, 3)


# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#
@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReshapeNet(unittest.TestCase):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)

a_np = np.random.random(size=(32, 32)).astype('float32')
b_np = np.random.random(size=(32, 32)).astype('float32')
label_np = np.random.randint(2, size=(32, 1)).astype('int64')

with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[32, 32], dtype='float32')
b = paddle.static.data(name="b", shape=[32, 32], dtype='float32')
label = paddle.static.data(
name="label", shape=[32, 1], dtype='int64')

sum = paddle.add(a, b)
z = paddle.reshape(sum, shape=[32, 32])

fc_1 = fluid.layers.fc(input=z, size=128)
prediction = fluid.layers.fc(input=fc_1, size=2, act='softmax')

cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)

if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()

exe = paddle.static.Executor(place)
exe.run(startup_prog)

print("Start run on {}".format(place))
for epoch in range(100):

pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))

return pred_res, loss_res

def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)

self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))


if __name__ == '__main__':
unittest.main()