-
Notifications
You must be signed in to change notification settings - Fork 5.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
【NPU】Support npu kernel for mul op #31584
Merged
Merged
Changes from all commits
Commits
Show all changes
28 commits
Select commit
Hold shift + click to select a range
6a5b180
add mul
frankwhzhang a5f17fb
add test mul
frankwhzhang 7e738dd
fix
frankwhzhang 1ac720e
fix
frankwhzhang 13f4068
fix
frankwhzhang 03018e4
fix
frankwhzhang 526502f
fix
frankwhzhang dc5bb81
fix
frankwhzhang ef215a1
fix
frankwhzhang 3baf8be
fix
frankwhzhang 8ccc809
fix
frankwhzhang 7ab7407
fix
frankwhzhang 987b54e
fix
frankwhzhang 85effc7
fix
frankwhzhang 9fac20a
fix
frankwhzhang 159e7fb
fix
frankwhzhang 73af19d
fix
frankwhzhang a355422
fix
frankwhzhang 506e46a
fix
frankwhzhang b130c7b
fix
frankwhzhang 9021886
fix
frankwhzhang e4a6a1d
fix
frankwhzhang 63a28cf
fix
frankwhzhang b4d87c8
fix
frankwhzhang 5908a08
fix
frankwhzhang 3fdc1d8
fix
frankwhzhang bccb99a
fix
frankwhzhang c95312c
fix
frankwhzhang File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | ||
Licensed under the Apache License, Version 2.0 (the "License"); | ||
you may not use this file except in compliance with the License. | ||
You may obtain a copy of the License at | ||
http://www.apache.org/licenses/LICENSE-2.0 | ||
Unless required by applicable law or agreed to in writing, software | ||
distributed under the License is distributed on an "AS IS" BASIS, | ||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
See the License for the specific language governing permissions and | ||
limitations under the License. */ | ||
|
||
#include <memory> | ||
#include <string> | ||
|
||
#include "paddle/fluid/operators/mul_op.h" | ||
#include "paddle/fluid/operators/npu_op_runner.h" | ||
|
||
namespace paddle { | ||
namespace operators { | ||
|
||
template <typename DeviceContext, typename T> | ||
class MulNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::Tensor>("X"); | ||
auto* y = ctx.Input<framework::Tensor>("Y"); | ||
auto* out = ctx.Output<framework::Tensor>("Out"); | ||
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims"); | ||
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims"); | ||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
if (x_num_col_dims == 1 && y_num_col_dims == 1) { | ||
if (x->dims().size() == 2 && y->dims().size() == 2) { | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
auto runner = | ||
NpuOpRunner("MatMul", {*x, *y}, {*out}, | ||
{{"transpose_x1", false}, {"transpose_x2", false}}); | ||
|
||
runner.Run(stream); | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// reshape | ||
Tensor tmp_x(x->type()); | ||
int64_t sec_dim = x->dims()[1] * x->dims()[2]; | ||
int64_t first_dim = x->dims()[0]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
out->mutable_data<T>(ctx.GetPlace()); | ||
// matmul | ||
auto runner = | ||
NpuOpRunner("MatMul", {tmp_x, *y}, {*out}, | ||
{{"transpose_x1", false}, {"transpose_x2", false}}); | ||
runner.Run(stream); | ||
} else { | ||
PADDLE_THROW(platform::errors::InvalidArgument("not suppert dims")); | ||
} | ||
// to do other | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5] | ||
PADDLE_ENFORCE_EQ(x_num_col_dims, 2, | ||
platform::errors::InvalidArgument( | ||
"now only support x_num_col_dims == 2: but got %d", | ||
x_num_col_dims)); | ||
// flatten => x.shape=[6, 4] | ||
Tensor tmp_x(x->type()); | ||
int64_t first_dim = x->dims()[0] * x->dims()[1]; | ||
int64_t sec_dim = x->dims()[2]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
|
||
// matmul [6,4] , [4, 5] => [6, 5] | ||
Tensor tmp_matmul(x->type()); | ||
tmp_matmul.Resize(framework::make_ddim({first_dim, y->dims()[1]})); | ||
tmp_matmul.mutable_data<T>(ctx.GetPlace()); | ||
|
||
auto runner_matmul = | ||
NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_matmul}, | ||
{{"transpose_x1", false}, {"transpose_x2", false}}); | ||
|
||
runner_matmul.Run(stream); | ||
// reshape [6, 5] => [2, 3, 5] | ||
(*out).Resize( | ||
framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]})); | ||
out->mutable_data(ctx.GetPlace(), x->type()); | ||
framework::TensorCopy( | ||
tmp_matmul, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), out); | ||
(*out).Resize( | ||
framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]})); | ||
} | ||
} | ||
}; | ||
|
||
template <typename DeviceContext, typename T> | ||
class MulGradNPUKernel : public framework::OpKernel<T> { | ||
public: | ||
void Compute(const framework::ExecutionContext& ctx) const override { | ||
auto* x = ctx.Input<framework::Tensor>("X"); | ||
auto* y = ctx.Input<framework::Tensor>("Y"); | ||
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out")); | ||
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X")); | ||
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y")); | ||
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims"); | ||
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims"); | ||
auto stream = | ||
ctx.template device_context<paddle::platform::NPUDeviceContext>() | ||
.stream(); | ||
if (x_num_col_dims == 1 && y_num_col_dims == 1) { | ||
if (x->dims().size() == 2 && y->dims().size() == 2) { | ||
if (dx) { | ||
dx->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dx = | ||
NpuOpRunner("MatMul", {*dout, *y}, {*dx}, | ||
{{"transpose_x1", false}, {"transpose_x2", true}}); | ||
|
||
runner_dx.Run(stream); | ||
} | ||
|
||
if (dy) { | ||
dy->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dy = | ||
NpuOpRunner("MatMul", {*x, *dout}, {*dy}, | ||
{{"transpose_x1", true}, {"transpose_x2", false}}); | ||
|
||
runner_dy.Run(stream); | ||
} | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// flatten => x.shape=[6, 4] | ||
// matmul | ||
if (dx) { | ||
// matmul [2, 5] * [12, 5] => [2, 12] | ||
Tensor tmp_matmul(y->type()); | ||
tmp_matmul.Resize( | ||
framework::make_ddim({dout->dims()[0], y->dims()[0]})); | ||
tmp_matmul.mutable_data<T>(ctx.GetPlace()); | ||
auto runner_matmul = | ||
NpuOpRunner("MatMul", {*dout, *y}, {tmp_matmul}, | ||
{{"transpose_x1", false}, {"transpose_x2", true}}); | ||
runner_matmul.Run(stream); | ||
// reshape [2, 12] => [2, 3, 4] | ||
dx->mutable_data(ctx.GetPlace(), x->type()); | ||
framework::TensorCopy( | ||
tmp_matmul, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), dx); | ||
} | ||
|
||
if (dy) { | ||
// flatten | ||
Tensor tmp_x(x->type()); | ||
int64_t sec_dim = x->dims()[1] * x->dims()[2]; | ||
int64_t first_dim = x->dims()[0]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
dy->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dy = | ||
NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy}, | ||
{{"transpose_x1", true}, {"transpose_x2", false}}); | ||
|
||
runner_dy.Run(stream); | ||
} | ||
} | ||
} else if (x->dims().size() == 3 && y->dims().size() == 2) { | ||
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5] | ||
PADDLE_ENFORCE_EQ(x_num_col_dims, 2, | ||
platform::errors::InvalidArgument( | ||
"now only support x_num_col_dims == 2: but got %d", | ||
x_num_col_dims)); | ||
// tmp_dout both used by dx and dy | ||
Tensor tmp_dout(x->type()); | ||
int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1]; | ||
int64_t dout_sec_dim = dout->dims()[2]; | ||
tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim})); | ||
tmp_dout.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*dout, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_dout); | ||
tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim})); | ||
|
||
if (dx) { | ||
// tmp_dout * y [6,5] * [4,5] => [6, 4] | ||
Tensor tmp_matmul(y->type()); | ||
tmp_matmul.Resize(framework::make_ddim({dout_first_dim, y->dims()[0]})); | ||
tmp_matmul.mutable_data<T>(ctx.GetPlace()); | ||
auto runner_matmul = | ||
NpuOpRunner("MatMul", {tmp_dout, *y}, {tmp_matmul}, | ||
{{"transpose_x1", false}, {"transpose_x2", true}}); | ||
runner_matmul.Run(stream); | ||
// reshape [6,4] => [2, 3, 4] | ||
dx->mutable_data(ctx.GetPlace(), x->type()); | ||
framework::TensorCopy( | ||
tmp_matmul, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), dx); | ||
} | ||
if (dy) { | ||
// flatten x.shape [2,3,4] => [6, 4] | ||
Tensor tmp_x(x->type()); | ||
int64_t first_dim = x->dims()[0] * x->dims()[1]; | ||
int64_t sec_dim = x->dims()[2]; | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
tmp_x.mutable_data<T>(ctx.GetPlace()); | ||
framework::TensorCopy( | ||
*x, ctx.GetPlace(), | ||
ctx.template device_context<platform::DeviceContext>(), &tmp_x); | ||
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim})); | ||
// mamtul [6,4] [6,5] =>[4,5] | ||
dy->mutable_data<T>(ctx.GetPlace()); | ||
auto runner_dy = | ||
NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy}, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. 将上面 |
||
{{"transpose_x1", true}, {"transpose_x2", false}}); | ||
runner_dy.Run(stream); | ||
} | ||
} | ||
} | ||
}; | ||
|
||
} // namespace operators | ||
} // namespace paddle | ||
|
||
namespace ops = paddle::operators; | ||
|
||
REGISTER_OP_NPU_KERNEL( | ||
mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::MulNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); | ||
REGISTER_OP_NPU_KERNEL( | ||
mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>, | ||
ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, | ||
paddle::platform::float16>); |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
这里用
BatchMatmul
计算性能更好吗?tmp_tile
的shape是什么样的?如果还是用
Matmul
的方式计算dx:这样算可以吗?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
fixed