Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【NPU】Support npu kernel for mul op #31584

Merged
merged 28 commits into from
Mar 16, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
243 changes: 243 additions & 0 deletions paddle/fluid/operators/mul_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,243 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/mul_op.h"
#include "paddle/fluid/operators/npu_op_runner.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class MulNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* out = ctx.Output<framework::Tensor>("Out");
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (x_num_col_dims == 1 && y_num_col_dims == 1) {
if (x->dims().size() == 2 && y->dims().size() == 2) {
out->mutable_data<T>(ctx.GetPlace());
auto runner =
NpuOpRunner("MatMul", {*x, *y}, {*out},
{{"transpose_x1", false}, {"transpose_x2", false}});

runner.Run(stream);
} else if (x->dims().size() == 3 && y->dims().size() == 2) {
// reshape
Tensor tmp_x(x->type());
int64_t sec_dim = x->dims()[1] * x->dims()[2];
int64_t first_dim = x->dims()[0];
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
tmp_x.mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), &tmp_x);
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
out->mutable_data<T>(ctx.GetPlace());
// matmul
auto runner =
NpuOpRunner("MatMul", {tmp_x, *y}, {*out},
{{"transpose_x1", false}, {"transpose_x2", false}});
runner.Run(stream);
} else {
PADDLE_THROW(platform::errors::InvalidArgument("not suppert dims"));
}
// to do other
} else if (x->dims().size() == 3 && y->dims().size() == 2) {
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
platform::errors::InvalidArgument(
"now only support x_num_col_dims == 2: but got %d",
x_num_col_dims));
// flatten => x.shape=[6, 4]
Tensor tmp_x(x->type());
int64_t first_dim = x->dims()[0] * x->dims()[1];
int64_t sec_dim = x->dims()[2];
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
tmp_x.mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), &tmp_x);
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));

// matmul [6,4] , [4, 5] => [6, 5]
Tensor tmp_matmul(x->type());
tmp_matmul.Resize(framework::make_ddim({first_dim, y->dims()[1]}));
tmp_matmul.mutable_data<T>(ctx.GetPlace());

auto runner_matmul =
NpuOpRunner("MatMul", {tmp_x, *y}, {tmp_matmul},
{{"transpose_x1", false}, {"transpose_x2", false}});

runner_matmul.Run(stream);
// reshape [6, 5] => [2, 3, 5]
(*out).Resize(
framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]}));
out->mutable_data(ctx.GetPlace(), x->type());
framework::TensorCopy(
tmp_matmul, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), out);
(*out).Resize(
framework::make_ddim({x->dims()[0], x->dims()[1], y->dims()[1]}));
}
}
};

template <typename DeviceContext, typename T>
class MulGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* y = ctx.Input<framework::Tensor>("Y");
auto* dout = ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* dx = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
auto* dy = ctx.Output<framework::Tensor>(framework::GradVarName("Y"));
int x_num_col_dims = ctx.Attr<int>("x_num_col_dims");
int y_num_col_dims = ctx.Attr<int>("y_num_col_dims");
auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (x_num_col_dims == 1 && y_num_col_dims == 1) {
if (x->dims().size() == 2 && y->dims().size() == 2) {
if (dx) {
dx->mutable_data<T>(ctx.GetPlace());
auto runner_dx =
NpuOpRunner("MatMul", {*dout, *y}, {*dx},
{{"transpose_x1", false}, {"transpose_x2", true}});

runner_dx.Run(stream);
}

if (dy) {
dy->mutable_data<T>(ctx.GetPlace());
auto runner_dy =
NpuOpRunner("MatMul", {*x, *dout}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});

runner_dy.Run(stream);
}
} else if (x->dims().size() == 3 && y->dims().size() == 2) {
// flatten => x.shape=[6, 4]
// matmul
if (dx) {
// matmul [2, 5] * [12, 5] => [2, 12]
Tensor tmp_matmul(y->type());
tmp_matmul.Resize(
framework::make_ddim({dout->dims()[0], y->dims()[0]}));
tmp_matmul.mutable_data<T>(ctx.GetPlace());
auto runner_matmul =
NpuOpRunner("MatMul", {*dout, *y}, {tmp_matmul},
{{"transpose_x1", false}, {"transpose_x2", true}});
runner_matmul.Run(stream);
// reshape [2, 12] => [2, 3, 4]
dx->mutable_data(ctx.GetPlace(), x->type());
framework::TensorCopy(
tmp_matmul, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dx);
}

if (dy) {
// flatten
Tensor tmp_x(x->type());
int64_t sec_dim = x->dims()[1] * x->dims()[2];
int64_t first_dim = x->dims()[0];
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
tmp_x.mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), &tmp_x);
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
dy->mutable_data<T>(ctx.GetPlace());
auto runner_dy =
NpuOpRunner("MatMul", {tmp_x, *dout}, {*dy},
{{"transpose_x1", true}, {"transpose_x2", false}});

runner_dy.Run(stream);
}
}
} else if (x->dims().size() == 3 && y->dims().size() == 2) {
// for example: x.shape=[2, 3, 4] y.shape=[4, 5], expect [2, 3, 5]
PADDLE_ENFORCE_EQ(x_num_col_dims, 2,
platform::errors::InvalidArgument(
"now only support x_num_col_dims == 2: but got %d",
x_num_col_dims));
// tmp_dout both used by dx and dy
Tensor tmp_dout(x->type());
int64_t dout_first_dim = dout->dims()[0] * dout->dims()[1];
int64_t dout_sec_dim = dout->dims()[2];
tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim}));
tmp_dout.mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(
*dout, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), &tmp_dout);
tmp_dout.Resize(framework::make_ddim({dout_first_dim, dout_sec_dim}));

if (dx) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里用BatchMatmul计算性能更好吗?tmp_tile的shape是什么样的?

如果还是用Matmul的方式计算dx:

  • tmp_dx = matmul(tmp_dout, y): [6, 5] * [4, 5] -> [6, 4]
  • dx = reshape(tmp_dx, [2, 3, 4]): [6, 4] -> [2, 3, 4]
    这样算可以吗?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed

// tmp_dout * y [6,5] * [4,5] => [6, 4]
Tensor tmp_matmul(y->type());
tmp_matmul.Resize(framework::make_ddim({dout_first_dim, y->dims()[0]}));
tmp_matmul.mutable_data<T>(ctx.GetPlace());
auto runner_matmul =
NpuOpRunner("MatMul", {tmp_dout, *y}, {tmp_matmul},
{{"transpose_x1", false}, {"transpose_x2", true}});
runner_matmul.Run(stream);
// reshape [6,4] => [2, 3, 4]
dx->mutable_data(ctx.GetPlace(), x->type());
framework::TensorCopy(
tmp_matmul, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), dx);
}
if (dy) {
// flatten x.shape [2,3,4] => [6, 4]
Tensor tmp_x(x->type());
int64_t first_dim = x->dims()[0] * x->dims()[1];
int64_t sec_dim = x->dims()[2];
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
tmp_x.mutable_data<T>(ctx.GetPlace());
framework::TensorCopy(
*x, ctx.GetPlace(),
ctx.template device_context<platform::DeviceContext>(), &tmp_x);
tmp_x.Resize(framework::make_ddim({first_dim, sec_dim}));
// mamtul [6,4] [6,5] =>[4,5]
dy->mutable_data<T>(ctx.GetPlace());
auto runner_dy =
NpuOpRunner("MatMul", {tmp_x, tmp_dout}, {*dy},
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

将上面tmp_xtmp_dout的reshape操作放到 if (dy)里是不是更好?避免计算无用的临时变量?

{{"transpose_x1", true}, {"transpose_x2", false}});
runner_dy.Run(stream);
}
}
}
};

} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
mul, ops::MulNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MulNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
mul_grad, ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::MulGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
Loading