Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

【NPU】Support NPU kernel for reduce_sum op v2 #31620

Merged
merged 8 commits into from
Mar 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
109 changes: 109 additions & 0 deletions paddle/fluid/operators/reduce_ops/reduce_sum_op_npu.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,109 @@
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <memory>
#include <string>

#include "paddle/fluid/operators/npu_op_runner.h"
#include "paddle/fluid/operators/reduce_ops/reduce_op.h"
#include "paddle/fluid/operators/unsqueeze_op.h"

namespace paddle {
namespace operators {

template <typename DeviceContext, typename T>
class ReduceSumNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* out = ctx.Output<framework::Tensor>("Out");
bool reduce_all = ctx.Attr<bool>("reduce_all");
bool keep_dims = ctx.Attr<bool>("keep_dim");
auto dims = ctx.Attr<std::vector<int>>("dim");

out->mutable_data<T>(ctx.GetPlace());

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (reduce_all) {
std::vector<int> dim_vec;
for (int i = 0; i < x->dims().size(); i++) {
dim_vec.push_back(i);
}
auto runner = NpuOpRunner("ReduceSumD", {*x}, {*out},
{{"axes", dim_vec}, {"keep_dims", keep_dims}});
runner.Run(stream);

} else {
auto runner = NpuOpRunner("ReduceSumD", {*x}, {*out},
{{"axes", dims}, {"keep_dims", keep_dims}});
runner.Run(stream);
}
}
};

template <typename DeviceContext, typename T>
class ReduceSumGradNPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* x = ctx.Input<framework::Tensor>("X");
auto* out_grad =
ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
auto* x_grad = ctx.Output<framework::Tensor>(framework::GradVarName("X"));
bool reduce_all = ctx.Attr<bool>("reduce_all");
bool keep_dims = ctx.Attr<bool>("keep_dim");
auto dims = ctx.Attr<std::vector<int>>("dim");

x_grad->mutable_data<T>(ctx.GetPlace());

auto stream =
ctx.template device_context<paddle::platform::NPUDeviceContext>()
.stream();
if (keep_dims || reduce_all) {
auto runner = NpuOpRunner("BroadcastToD", {*out_grad}, {*x_grad},
{{"shape", framework::vectorize(x->dims())}});
runner.Run(stream);
} else {
framework::DDim out_dims;
out_dims = UnsqueezeKernel<DeviceContext, T>::GetOutputShape(
dims, out_grad->dims());

Tensor out_grad_tmp(out_grad->type());
out_grad_tmp.Resize(out_dims);
out_grad_tmp.mutable_data<T>(ctx.GetPlace());

auto runner = NpuOpRunner("BroadcastToD", {out_grad_tmp}, {*x_grad},
{{"shape", framework::vectorize(x->dims())}});
runner.Run(stream);
}
}
};
} // namespace operators
} // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_NPU_KERNEL(
reduce_sum,
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::ReduceSumNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
REGISTER_OP_NPU_KERNEL(
reduce_sum_grad,
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext, float>,
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext, int>,
ops::ReduceSumGradNPUKernel<paddle::platform::NPUDeviceContext,
paddle::platform::float16>);
198 changes: 198 additions & 0 deletions python/paddle/fluid/tests/unittests/npu/test_reduce_sum_op_npu.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,198 @@
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import unittest
import sys
sys.path.append("..")
from op_test import OpTest
import paddle
import paddle.fluid as fluid

paddle.enable_static()
SEED = 2021


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReduceSum(OpTest):
def setUp(self):
np.random.seed(SEED)
self.set_npu()
self.place = paddle.NPUPlace(0)
self.init_op_type()
self.initTestCase()

self.use_mkldnn = False
self.attrs = {
'dim': self.axis,
'keep_dim': self.keep_dim,
'reduce_all': self.reduce_all
}
self.inputs = {'X': np.random.random(self.shape).astype("float32")}
if self.attrs['reduce_all']:
self.outputs = {'Out': self.inputs['X'].sum()}
else:
self.outputs = {
'Out': self.inputs['X'].sum(axis=self.axis,
keepdims=self.attrs['keep_dim'])
}

def set_npu(self):
self.__class__.use_npu = True

def init_dtype(self):
self.dtype = np.float32

def init_op_type(self):
self.op_type = "reduce_sum"
self.use_mkldnn = False
self.keep_dim = False
self.reduce_all = False

def initTestCase(self):
self.shape = (5, 6)
self.axis = (0, )

def test_check_output(self):
self.check_output_with_place(self.place, check_dygraph=False)

# TODO(ascendrc): Add grad test
# def test_check_grad(self):
# if self.dtype == np.float16:
# return
# self.check_grad(['X'], 'Out')
#


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReduceSumNet(unittest.TestCase):
def set_reduce_sum_function(self, x):
# keep_dim = False
return paddle.fluid.layers.reduce_sum(x, dim=-1)

def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)

a_np = np.random.random(size=(2, 3, 4)).astype('float32')
b_np = np.random.random(size=(2, 3, 4)).astype('float32')
label_np = np.random.randint(2, size=(2, 1)).astype('int64')

with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[2, 3, 4], dtype='float32')
b = paddle.static.data(name="b", shape=[2, 3, 4], dtype='float32')
label = paddle.static.data(
name="label", shape=[2, 1], dtype='int64')

z = paddle.add(a, b)
z_1 = self.set_reduce_sum_function(z)

prediction = fluid.layers.fc(input=z_1, size=2, act='softmax')

cost = fluid.layers.cross_entropy(input=prediction, label=label)
loss = fluid.layers.reduce_mean(cost)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)

if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()

exe = paddle.static.Executor(place)
exe.run(startup_prog)

print("Start run on {}".format(place))
for epoch in range(100):

pred_res, loss_res = exe.run(
main_prog,
feed={"a": a_np,
"b": b_np,
"label": label_np},
fetch_list=[prediction, loss])
if epoch % 10 == 0:
print("Epoch {} | Prediction[0]: {}, Loss: {}".format(
epoch, pred_res[0], loss_res))

return pred_res, loss_res

def test_npu(self):
cpu_pred, cpu_loss = self._test(False)
npu_pred, npu_loss = self._test(True)

self.assertTrue(np.allclose(npu_pred, cpu_pred))
self.assertTrue(np.allclose(npu_loss, cpu_loss))


@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReduceSumNet2(TestReduceSumNet):
def set_reduce_sum_function(self, x):
# keep_dim = True
return paddle.fluid.layers.reduce_sum(x, dim=-1, keep_dim=True)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

没有dims的跑通了嘛

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

跑通了



@unittest.skipIf(not paddle.is_compiled_with_npu(),
"core is not compiled with NPU")
class TestReduceSumNet3(TestReduceSumNet):
def _test(self, run_npu=True):
main_prog = paddle.static.Program()
startup_prog = paddle.static.Program()
main_prog.random_seed = SEED
startup_prog.random_seed = SEED
np.random.seed(SEED)

a_np = np.random.random(size=(2, 3, 4)).astype('float32')
b_np = np.random.random(size=(2, 3, 4)).astype('float32')

with paddle.static.program_guard(main_prog, startup_prog):
a = paddle.static.data(name="a", shape=[2, 3, 4], dtype='float32')
b = paddle.static.data(name="b", shape=[2, 3, 4], dtype='float32')

z = paddle.add(a, b)
loss = fluid.layers.reduce_sum(z)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
sgd.minimize(loss)

if run_npu:
place = paddle.NPUPlace(0)
else:
place = paddle.CPUPlace()

exe = paddle.static.Executor(place)
exe.run(startup_prog)

print("Start run on {}".format(place))
for epoch in range(100):

loss_res = exe.run(main_prog,
feed={"a": a_np,
"b": b_np},
fetch_list=[loss])
if epoch % 10 == 0:
print("Epoch {} | Loss: {}".format(epoch, loss_res))

return loss_res, loss_res


if __name__ == '__main__':
unittest.main()