Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

gather function only #3191

Merged
merged 8 commits into from
Aug 9, 2017
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
117 changes: 117 additions & 0 deletions paddle/operators/gather_func.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"

/**
* Return a new tensor from source tensor, gathered according to index
* input[src]: type-T source Tensor
* input[index]: type-int index Tensor (1-D)
* return: output tensor
*/
template <typename Place, typename T>
Tensor* Gather(Tensor* src, Tensor* index) {
// check index of shape 1-D
PADDLE_ENFORCE(index->dims().size() == 1);
int index_size = index->dims()[0];

// Source shape
auto src_dims = src->dims();
DDim output_dims(dims_src);
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

dims_src ==> src_dims ?

// Create a tensor of shape [index_size, dim_src[1:]]
output_dims[0] = index_size;

Tensor* New_tensor;
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Tensor* New_tensor = new Tensor();  

use shared_ptr maybe better

float* output = nullptr;

/* slice size */
int slice_size = 1;
for (size_t i = 0; i < src_dims.size(); ++i) slice_size *= src_dims[i];

/* Gathering */
if (place == CPUPlace()) {
// init for CPU
output = New_tensor.mutable_data<T>(output_dims, CPUPlace());
CPUGather(
src->data(), index->data(), slice_size, new_tensor->mutable_data());
} else { // GPU
// init for GPU
output = New_tensor.mutable_data<T>(output_dims, GPUPlace());
/* how to specialize device??*/
GPUGather(
d, src->data(), index->data(), slice_size, new_tensor->mutable_data());
}
return New_tensor;
}

/* Implementation of CPU copy */
template <typename T>
void CPUGather(const T* params,
const int* indices,
const int slice_size,
const int index_size,
T* output) {
const size_t slice_bytes = slice_size * sizeof(T);

for (size_t i = 0; i < index_size; ++i) {
int index_ = indices[i];
/* copy src[index_] to output[i] */
memcpy(
output + i * slice_bytes, params + index_ * slice_bytes, slice_bytes);
}
}

/* Implementation of GPU copy:
I suppose the GPUDevice& d, contains gpu_id and thread_id
d = cuda_stream(gpu_id_, stream_id_);
*/
template <typename T>
void GPUGather(const GPUDevice& d,
const T* src,
const int* index,
const int slice_size,
const int index_size,
T* output) {
int block_count = slice_size * index_size;
int thread_per_block = 1024;

GatherOpKernel<T><<<block_count, thread_per_block, 0, d.stream()>>>(
src, index, output, slice_size, indices_size, slice_size, out_size);
}

template <typename T>
__global__ void GatherOpKernel(const T* params,
const int* indices,
T* out,
int64 indices_size,
int64 slice_size,
int64 out_size) {
/* I suppose we have the following macro,
which I strongly suggest that we should put in cuda:
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
i += blockDim.x * gridDim.x)
*/
CUDA_1D_KERNEL_LOOP(i, out_size) {
int indices_i = i / slice_size;
int slice_i = i - indices_i * slice_size; // offset inside the slice
int gather_i = indices[indices_i];
int params_i = gather_i * slice_size + slice_i;
out[i] = *(params + params_i);
}
}
116 changes: 116 additions & 0 deletions paddle/operators/scatter_func.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,116 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
#include <cstring>
#include "paddle/framework/ddim.h"
#include "paddle/framework/tensor.h"
#include "paddle/platform/place.h"

/**
* Return a updated tensor from source tensor, scattered according to index:
* dst[i] += src[index[i]]
* input[src]: type-T source Tensor
* input[index]: type-int index Tensor (1-D)
* return: output tensor
*/
template <typename Place, typename T>
void ScatterUpdate(Tensor* src, Tensor* dst, Tensor* index) {
// Source shape
auto src_dims = src->dims();
auto dst_dims = dst->dims();
DDim output_dims(dims_src);

// check src shape and dst shape should match
for (size_t i = 1; i < src_dims.size(); i++)
PADDLE_ENFORCE(src_dims[i] == dst_dims[i]);

int index_size = index->dims()[0];

/* slice size */
int slice_size = 1;
for (size_t i = 0; i < src_dims.size(); ++i) slice_size *= src_dims[i];

if (place == CPUPlace()) {
// init
output = new_tensor.mutable_data<T>(output_dims, CPUPlace());
CPUScatterUpdate(
src->data(), index->data(), slice_size, new_tensor->mutable_data());

} else { // GPU
// init
output = new_tensor.mutable_data<T>(output_dims, GPUPlace());
/* how to specialize device??*/
GPUScatterUpdate(
d, src->data(), index->data(), slice_size, new_tensor->mutable_data());
}
}

/* Implementation of CPU copy */
template <typename T>
void CPUScatterUpdate(const T* src,
const int* index,
const int slice_size,
const int index_size,
T* output) {
// const size_t slice_bytes = slice_size * sizeof(T);

for (size_t i = 0; i < index_size; ++i) {
int index_ = index[i];
math::vAdd<T>(slice_size,
src + index_ * slice_bytes,
output + i * slice_bytes,
output + i * slice_bytes);
}
}

/* Implementation of GPU scatter:
I suppose the GPUDevice& d, contains gpu_id and thread_id
d = cuda_stream(gpu_id_, stream_id_);
*/
template <typename T>
void GPUScatterUpdate(const GPUDevice& d,
const T* src,
const int* index,
const int slice_size,
const int index_size,
T* output) {
int block_count = slice_size * index_size;
int thread_per_block = 1024;

ScatterOpKernel<T><<<block_count, thread_per_block, 0, d.stream()>>>(
src, index, output, slice_size, indices_size, slice_size, out_size);
}

template <typename T>
__global__ void ScatterOpKernel(const T* params,
const int* indices,
T* out,
int64 indices_size,
int64 slice_size,
int64 out_size) {
/* I suppose we have the following macro,
which I strongly suggest that we should put in cuda:
#define CUDA_1D_KERNEL_LOOP(i, n) \
for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < n; \
i += blockDim.x * gridDim.x)
*/
CUDA_1D_KERNEL_LOOP(i, out_size) {
int indices_i = i / slice_size;
int slice_i = i - indices_i * slice_size; // offset inside the slice
int scatter_i = indices[indices_i];
int params_i = scatter_i * slice_size + slice_i;
out[i] += *(params + params_i);
}
}